Supplementary Information

2D, 3D and Hybrid QSAR Studies of Nostoclide Analogues as Inhibitors of the Photosystem II

Pedro O. M. de Carvalho* and Márcia M. C. Ferreira **

*Instituto de Química, Universidade Estadual de Campinas, 13083-970 Campinas-SP, Brazil

Table S1. 2D QSAR molecular descriptors values

<table>
<thead>
<tr>
<th>Molecule</th>
<th>CO+CM</th>
<th>wHOA02</th>
<th>QMafYY</th>
<th>QMbYY</th>
<th>QMbZZ</th>
<th>PI / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>m01</td>
<td>−0.2372</td>
<td>0.0434</td>
<td>−5.302</td>
<td>1.1836</td>
<td>−1.9310</td>
<td>29.2</td>
</tr>
<tr>
<td>m02</td>
<td>−0.2357</td>
<td>0.0515</td>
<td>−6.841</td>
<td>1.1717</td>
<td>−1.9003</td>
<td>26.0</td>
</tr>
<tr>
<td>m03</td>
<td>−0.2285</td>
<td>0.0454</td>
<td>−4.770</td>
<td>1.1336</td>
<td>−1.8820</td>
<td>16.7</td>
</tr>
<tr>
<td>m04</td>
<td>−0.2308</td>
<td>0.0493</td>
<td>0.464</td>
<td>1.1426</td>
<td>−1.8755</td>
<td>8.0</td>
</tr>
<tr>
<td>m06</td>
<td>−0.2380</td>
<td>0.0340</td>
<td>−5.952</td>
<td>1.1813</td>
<td>−1.9521</td>
<td>NEb</td>
</tr>
<tr>
<td>m07</td>
<td>−0.2293</td>
<td>0.0352</td>
<td>−13.512</td>
<td>1.1482</td>
<td>−1.9109</td>
<td>NEb</td>
</tr>
<tr>
<td>m08</td>
<td>−0.2522</td>
<td>0.0343</td>
<td>6.895</td>
<td>1.2770</td>
<td>−2.0727</td>
<td>44.9</td>
</tr>
<tr>
<td>m09i</td>
<td>−0.2509</td>
<td>0.0367</td>
<td>−2.556</td>
<td>1.3161</td>
<td>−2.0353</td>
<td>49.9</td>
</tr>
<tr>
<td>m10</td>
<td>−0.2536</td>
<td>0.0350</td>
<td>−17.753</td>
<td>1.3277</td>
<td>−2.0411</td>
<td>55.5</td>
</tr>
<tr>
<td>m11</td>
<td>−0.2350</td>
<td>0.0488</td>
<td>−2.051</td>
<td>1.2002</td>
<td>−1.8474</td>
<td>NEb</td>
</tr>
<tr>
<td>m12</td>
<td>−0.2448</td>
<td>0.0275</td>
<td>−1.103</td>
<td>1.2464</td>
<td>−1.9634</td>
<td>38.6</td>
</tr>
<tr>
<td>m13</td>
<td>−0.2450</td>
<td>0.0677</td>
<td>2.440</td>
<td>1.2536</td>
<td>−1.9099</td>
<td>7.1</td>
</tr>
<tr>
<td>m14</td>
<td>−0.2323</td>
<td>0.0680</td>
<td>−1.100</td>
<td>1.2602</td>
<td>−1.9139</td>
<td>25.4</td>
</tr>
<tr>
<td>m15</td>
<td>−0.2329</td>
<td>0.0331</td>
<td>−9.840</td>
<td>1.2016</td>
<td>−1.9745</td>
<td>39.5</td>
</tr>
<tr>
<td>m16</td>
<td>−0.2480</td>
<td>0.0299</td>
<td>−21.710</td>
<td>1.2724</td>
<td>−2.0062</td>
<td>57.8</td>
</tr>
<tr>
<td>m17</td>
<td>−0.2265</td>
<td>0.0595</td>
<td>−14.258</td>
<td>1.1861</td>
<td>−1.8775</td>
<td>NEb</td>
</tr>
<tr>
<td>m18i</td>
<td>−0.2318</td>
<td>0.0366</td>
<td>−2.580</td>
<td>1.1789</td>
<td>−1.9047</td>
<td>6.9</td>
</tr>
<tr>
<td>m19</td>
<td>−0.2291</td>
<td>0.0581</td>
<td>8.060</td>
<td>1.1272</td>
<td>−1.8502</td>
<td>6.5</td>
</tr>
<tr>
<td>m20i</td>
<td>−0.2299</td>
<td>0.0489</td>
<td>2.269</td>
<td>1.1704</td>
<td>−1.8789</td>
<td>NEb</td>
</tr>
<tr>
<td>m21</td>
<td>−0.2485</td>
<td>0.0599</td>
<td>4.008</td>
<td>1.1834</td>
<td>−1.9322</td>
<td>15.0</td>
</tr>
<tr>
<td>m22</td>
<td>−0.2449</td>
<td>0.0427</td>
<td>−8.594</td>
<td>1.2050</td>
<td>−1.9475</td>
<td>43.5</td>
</tr>
<tr>
<td>m24</td>
<td>−0.2323</td>
<td>0.0555</td>
<td>9.378</td>
<td>1.1538</td>
<td>−1.8784</td>
<td>NEb</td>
</tr>
<tr>
<td>m26i</td>
<td>−0.2357</td>
<td>0.0383</td>
<td>−5.241</td>
<td>1.2240</td>
<td>−1.9481</td>
<td>28.8</td>
</tr>
<tr>
<td>m27</td>
<td>−0.2343</td>
<td>0.0473</td>
<td>−1.262</td>
<td>1.3055</td>
<td>−1.9736</td>
<td>25.6</td>
</tr>
<tr>
<td>m29</td>
<td>−0.2324</td>
<td>0.0441</td>
<td>−8.154</td>
<td>1.2305</td>
<td>−1.9815</td>
<td>30.8</td>
</tr>
<tr>
<td>m30</td>
<td>−0.2448</td>
<td>0.0387</td>
<td>−3.852</td>
<td>1.2052</td>
<td>−1.9778</td>
<td>20.3</td>
</tr>
<tr>
<td>m31</td>
<td>−0.2297</td>
<td>0.0465</td>
<td>0.026</td>
<td>1.1934</td>
<td>−1.9216</td>
<td>5.8</td>
</tr>
<tr>
<td>m32</td>
<td>−0.2407</td>
<td>0.0434</td>
<td>−6.710</td>
<td>1.1881</td>
<td>−1.9754</td>
<td>21.8</td>
</tr>
<tr>
<td>m33i</td>
<td>−0.2314</td>
<td>0.0372</td>
<td>−4.160</td>
<td>1.1565</td>
<td>−1.8681</td>
<td>22.6</td>
</tr>
</tbody>
</table>

*Percentage of photosynthesis inhibition; **non effective: PI < 5 %.

*e-mail: marcia@iqm.unicamp.br
Table S2. 3D QSAR molecular descriptors values

<table>
<thead>
<tr>
<th>Molecule</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>L1</th>
<th>L2</th>
<th>PI% / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>m01</td>
<td>2.383</td>
<td>-350.93</td>
<td>241.82</td>
<td>241.82</td>
<td>-525.24</td>
<td>-2.6546</td>
<td>21.972</td>
<td>29.2</td>
</tr>
<tr>
<td>m02</td>
<td>-0.197</td>
<td>-313.81</td>
<td>192.15</td>
<td>192.15</td>
<td>-529.55</td>
<td>-2.9578</td>
<td>22.186</td>
<td>26.0</td>
</tr>
<tr>
<td>m03</td>
<td>1.688</td>
<td>-358.80</td>
<td>195.90</td>
<td>195.90</td>
<td>-528.56</td>
<td>-2.8425</td>
<td>21.666</td>
<td>16.7</td>
</tr>
<tr>
<td>m04</td>
<td>9.971</td>
<td>-346.27</td>
<td>207.25</td>
<td>207.94</td>
<td>-549.33</td>
<td>-2.7719</td>
<td>21.327</td>
<td>8.0</td>
</tr>
<tr>
<td>m06</td>
<td>19.291</td>
<td>-316.73</td>
<td>197.83</td>
<td>197.83</td>
<td>-531.27</td>
<td>-2.8339</td>
<td>22.361</td>
<td>NEb</td>
</tr>
<tr>
<td>m07</td>
<td>-22.118</td>
<td>-304.81</td>
<td>236.75</td>
<td>236.75</td>
<td>-487.08</td>
<td>-2.7748</td>
<td>22.242</td>
<td>NEb</td>
</tr>
<tr>
<td>m08</td>
<td>16.503</td>
<td>-327.02</td>
<td>212.11</td>
<td>212.11</td>
<td>-603.95</td>
<td>-3.2189</td>
<td>21.813</td>
<td>44.9</td>
</tr>
<tr>
<td>m09i</td>
<td>-79.017</td>
<td>-294.76</td>
<td>211.38</td>
<td>209.99</td>
<td>-649.85</td>
<td>-2.8856</td>
<td>21.510</td>
<td>49.9</td>
</tr>
<tr>
<td>m10</td>
<td>-38.744</td>
<td>-308.60</td>
<td>250.53</td>
<td>249.99</td>
<td>-564.48</td>
<td>-2.9148</td>
<td>23.184</td>
<td>55.5</td>
</tr>
<tr>
<td>m11</td>
<td>31.522</td>
<td>-357.31</td>
<td>154.32</td>
<td>161.32</td>
<td>-583.47</td>
<td>-2.8917</td>
<td>21.286</td>
<td>NEb</td>
</tr>
<tr>
<td>m12</td>
<td>-3.822</td>
<td>-343.88</td>
<td>209.45</td>
<td>199.85</td>
<td>-561.25</td>
<td>-3.0701</td>
<td>22.543</td>
<td>38.6</td>
</tr>
<tr>
<td>m13</td>
<td>32.784</td>
<td>-373.04</td>
<td>162.71</td>
<td>152.29</td>
<td>-595.11</td>
<td>-2.8724</td>
<td>21.599</td>
<td>7.1</td>
</tr>
<tr>
<td>m14</td>
<td>44.581</td>
<td>-359.05</td>
<td>191.42</td>
<td>183.52</td>
<td>-529.13</td>
<td>-3.1642</td>
<td>21.000</td>
<td>25.4</td>
</tr>
<tr>
<td>m15</td>
<td>18.061</td>
<td>-310.47</td>
<td>239.26</td>
<td>239.26</td>
<td>-503.86</td>
<td>-2.9711</td>
<td>22.924</td>
<td>39.5</td>
</tr>
<tr>
<td>m16</td>
<td>-48.911</td>
<td>-288.91</td>
<td>246.85</td>
<td>246.85</td>
<td>-539.39</td>
<td>-2.8702</td>
<td>22.213</td>
<td>57.8</td>
</tr>
<tr>
<td>m17</td>
<td>2.739</td>
<td>-331.14</td>
<td>166.29</td>
<td>166.29</td>
<td>-559.83</td>
<td>-2.8732</td>
<td>21.648</td>
<td>NEb</td>
</tr>
<tr>
<td>m18i</td>
<td>33.747</td>
<td>-376.81</td>
<td>201.06</td>
<td>201.06</td>
<td>-575.32</td>
<td>-2.7609</td>
<td>20.792</td>
<td>6.9</td>
</tr>
<tr>
<td>m20i</td>
<td>10.106</td>
<td>-403.05</td>
<td>181.81</td>
<td>181.81</td>
<td>-520.55</td>
<td>-2.9224</td>
<td>21.929</td>
<td>NEb</td>
</tr>
<tr>
<td>m21</td>
<td>36.733</td>
<td>-364.99</td>
<td>226.98</td>
<td>226.98</td>
<td>-518.62</td>
<td>-2.8098</td>
<td>22.166</td>
<td>15.0</td>
</tr>
<tr>
<td>m22</td>
<td>24.575</td>
<td>-328.69</td>
<td>203.55</td>
<td>203.55</td>
<td>-606.03</td>
<td>-3.1715</td>
<td>21.847</td>
<td>43.5</td>
</tr>
<tr>
<td>m24</td>
<td>-3.529</td>
<td>-364.39</td>
<td>154.89</td>
<td>139.49</td>
<td>-569.09</td>
<td>-2.9271</td>
<td>21.457</td>
<td>NEb</td>
</tr>
<tr>
<td>m26i</td>
<td>-26.174</td>
<td>-338.89</td>
<td>229.08</td>
<td>229.08</td>
<td>-565.01</td>
<td>-2.7028</td>
<td>22.450</td>
<td>28.8</td>
</tr>
<tr>
<td>m27</td>
<td>-10.455</td>
<td>-340.07</td>
<td>272.30</td>
<td>272.30</td>
<td>-571.53</td>
<td>-2.7010</td>
<td>21.540</td>
<td>25.6</td>
</tr>
<tr>
<td>m29</td>
<td>10.490</td>
<td>-335.84</td>
<td>225.06</td>
<td>225.06</td>
<td>-576.69</td>
<td>-2.9369</td>
<td>22.054</td>
<td>30.8</td>
</tr>
<tr>
<td>m30</td>
<td>9.265</td>
<td>-332.29</td>
<td>192.70</td>
<td>192.70</td>
<td>-590.96</td>
<td>-2.8313</td>
<td>22.490</td>
<td>20.3</td>
</tr>
<tr>
<td>m31</td>
<td>-13.520</td>
<td>-340.01</td>
<td>212.32</td>
<td>212.32</td>
<td>-511.56</td>
<td>-2.7779</td>
<td>21.862</td>
<td>5.8</td>
</tr>
<tr>
<td>m32</td>
<td>10.507</td>
<td>-348.54</td>
<td>206.91</td>
<td>206.91</td>
<td>-587.01</td>
<td>-3.0669</td>
<td>22.318</td>
<td>21.8</td>
</tr>
<tr>
<td>m33i</td>
<td>-25.047</td>
<td>-291.83</td>
<td>183.00</td>
<td>183.00</td>
<td>-519.98</td>
<td>-2.8486</td>
<td>22.795</td>
<td>22.6</td>
</tr>
</tbody>
</table>

aPercentage of photosynthesis inhibition; bnon effective: PI < 5 %.
Table S3. Hybrid QSAR molecular descriptors values

<table>
<thead>
<tr>
<th>Molecule</th>
<th>CO+CM</th>
<th>wHO02</th>
<th>QMafYY</th>
<th>QMbYY</th>
<th>E1</th>
<th>E3</th>
<th>L1</th>
<th>PF / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>m01</td>
<td>-0.2372</td>
<td>0.0434</td>
<td>-5.302</td>
<td>1.1836</td>
<td>2.383</td>
<td>241.82</td>
<td>-2.6546</td>
<td>29.2</td>
</tr>
<tr>
<td>m02</td>
<td>-0.2357</td>
<td>0.0515</td>
<td>-6.841</td>
<td>1.1717</td>
<td>-0.197</td>
<td>192.15</td>
<td>-2.9578</td>
<td>26.0</td>
</tr>
<tr>
<td>m03</td>
<td>-0.2285</td>
<td>0.0454</td>
<td>-4.770</td>
<td>1.1336</td>
<td>1.688</td>
<td>195.90</td>
<td>-2.8425</td>
<td>16.7</td>
</tr>
<tr>
<td>m04</td>
<td>-0.2308</td>
<td>0.0493</td>
<td>0.464</td>
<td>1.1426</td>
<td>9.971</td>
<td>207.25</td>
<td>-2.7719</td>
<td>8.0</td>
</tr>
<tr>
<td>m06</td>
<td>-0.2380</td>
<td>0.0340</td>
<td>-5.952</td>
<td>1.1813</td>
<td>19.291</td>
<td>197.83</td>
<td>-2.8339</td>
<td>NEb</td>
</tr>
<tr>
<td>m07</td>
<td>-0.2293</td>
<td>0.0352</td>
<td>-13.512</td>
<td>1.1482</td>
<td>-22.118</td>
<td>236.75</td>
<td>-2.7748</td>
<td>NEb</td>
</tr>
<tr>
<td>m08</td>
<td>-0.2522</td>
<td>0.0343</td>
<td>6.895</td>
<td>1.2770</td>
<td>16.503</td>
<td>212.11</td>
<td>-3.2189</td>
<td>44.9</td>
</tr>
<tr>
<td>m09i</td>
<td>-0.2509</td>
<td>0.0367</td>
<td>-2.556</td>
<td>1.3161</td>
<td>-79.017</td>
<td>211.38</td>
<td>-2.8856</td>
<td>49.9</td>
</tr>
<tr>
<td>m10</td>
<td>-0.2536</td>
<td>0.0350</td>
<td>-17.753</td>
<td>1.3277</td>
<td>-38.744</td>
<td>250.53</td>
<td>-2.9148</td>
<td>55.5</td>
</tr>
<tr>
<td>m11</td>
<td>-0.2350</td>
<td>0.0488</td>
<td>-2.051</td>
<td>1.2002</td>
<td>31.522</td>
<td>154.32</td>
<td>-2.8917</td>
<td>NEb</td>
</tr>
<tr>
<td>m12</td>
<td>-0.2448</td>
<td>0.0275</td>
<td>-1.103</td>
<td>1.2464</td>
<td>-3.822</td>
<td>209.45</td>
<td>-3.0701</td>
<td>38.6</td>
</tr>
<tr>
<td>m13</td>
<td>-0.2450</td>
<td>0.0677</td>
<td>2.440</td>
<td>1.2536</td>
<td>32.784</td>
<td>162.71</td>
<td>-2.8724</td>
<td>7.1</td>
</tr>
<tr>
<td>m14</td>
<td>-0.2323</td>
<td>0.0680</td>
<td>-1.100</td>
<td>1.2602</td>
<td>44.581</td>
<td>191.42</td>
<td>-3.1642</td>
<td>25.4</td>
</tr>
<tr>
<td>m15</td>
<td>-0.2329</td>
<td>0.0331</td>
<td>-9.840</td>
<td>1.2016</td>
<td>18.061</td>
<td>239.26</td>
<td>-2.9711</td>
<td>39.5</td>
</tr>
<tr>
<td>m16</td>
<td>-0.2480</td>
<td>0.0299</td>
<td>-21.710</td>
<td>1.2724</td>
<td>-48.911</td>
<td>246.85</td>
<td>-2.8702</td>
<td>57.8</td>
</tr>
<tr>
<td>m17</td>
<td>-0.2265</td>
<td>0.0595</td>
<td>-14.258</td>
<td>1.1861</td>
<td>2.739</td>
<td>166.29</td>
<td>-2.8732</td>
<td>NEb</td>
</tr>
<tr>
<td>m18i</td>
<td>-0.2318</td>
<td>0.0366</td>
<td>-2.580</td>
<td>1.1789</td>
<td>33.747</td>
<td>201.06</td>
<td>-2.7609</td>
<td>6.9</td>
</tr>
<tr>
<td>m19</td>
<td>-0.2291</td>
<td>0.0581</td>
<td>8.060</td>
<td>1.1272</td>
<td>-22.370</td>
<td>180.99</td>
<td>-2.7471</td>
<td>6.5</td>
</tr>
<tr>
<td>m20i</td>
<td>-0.2299</td>
<td>0.0489</td>
<td>2.269</td>
<td>1.1704</td>
<td>10.106</td>
<td>181.81</td>
<td>-2.9224</td>
<td>NEb</td>
</tr>
<tr>
<td>m21</td>
<td>-0.2485</td>
<td>0.0599</td>
<td>4.008</td>
<td>1.1834</td>
<td>36.733</td>
<td>226.98</td>
<td>-2.8098</td>
<td>15.0</td>
</tr>
<tr>
<td>m22</td>
<td>-0.2449</td>
<td>0.0427</td>
<td>-8.594</td>
<td>1.2050</td>
<td>24.575</td>
<td>203.55</td>
<td>-3.1715</td>
<td>43.5</td>
</tr>
<tr>
<td>m24</td>
<td>-0.2323</td>
<td>0.0555</td>
<td>9.378</td>
<td>1.1538</td>
<td>-3.529</td>
<td>154.89</td>
<td>-2.9271</td>
<td>NEb</td>
</tr>
<tr>
<td>m26i</td>
<td>-0.2357</td>
<td>0.0383</td>
<td>-5.241</td>
<td>1.2240</td>
<td>-26.174</td>
<td>229.08</td>
<td>-2.7028</td>
<td>28.8</td>
</tr>
<tr>
<td>m27</td>
<td>-0.2343</td>
<td>0.0473</td>
<td>-1.262</td>
<td>1.3055</td>
<td>-10.455</td>
<td>272.30</td>
<td>-2.7010</td>
<td>25.6</td>
</tr>
<tr>
<td>m29</td>
<td>-0.2324</td>
<td>0.0441</td>
<td>-8.154</td>
<td>1.2305</td>
<td>10.490</td>
<td>225.06</td>
<td>-2.9369</td>
<td>30.8</td>
</tr>
<tr>
<td>m30</td>
<td>-0.2448</td>
<td>0.0387</td>
<td>-3.852</td>
<td>1.2052</td>
<td>9.265</td>
<td>192.70</td>
<td>-2.8313</td>
<td>20.3</td>
</tr>
<tr>
<td>m31</td>
<td>-0.2297</td>
<td>0.0465</td>
<td>0.026</td>
<td>1.1934</td>
<td>-13.520</td>
<td>212.32</td>
<td>-2.7779</td>
<td>5.8</td>
</tr>
<tr>
<td>m32</td>
<td>-0.2407</td>
<td>0.0434</td>
<td>-6.710</td>
<td>1.1881</td>
<td>10.507</td>
<td>206.91</td>
<td>-3.0669</td>
<td>21.8</td>
</tr>
<tr>
<td>m33i</td>
<td>-0.2314</td>
<td>0.0372</td>
<td>-4.160</td>
<td>1.1565</td>
<td>-25.047</td>
<td>183.00</td>
<td>-2.8486</td>
<td>22.6</td>
</tr>
</tbody>
</table>

*Percentage of photosynthesis inhibition; * non effective: PI < 5 %.
Table S4. Measured and predicted percentages of photosynthesis inhibition

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Predicted PI (2D QSAR)</th>
<th>Predicted PI (3D QSAR)</th>
<th>Predicted PI (hybrid QSAR)</th>
<th>Measured PIa / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>m01</td>
<td>20.709</td>
<td>12.861</td>
<td>14.750</td>
<td>29.2</td>
</tr>
<tr>
<td>m02</td>
<td>14.602</td>
<td>22.628</td>
<td>18.026</td>
<td>26.0</td>
</tr>
<tr>
<td>m03</td>
<td>7.366</td>
<td>8.622</td>
<td>7.351</td>
<td>16.7</td>
</tr>
<tr>
<td>m04</td>
<td>6.335</td>
<td>12.062</td>
<td>5.705</td>
<td>8.0</td>
</tr>
<tr>
<td>m06</td>
<td>27.100</td>
<td>19.221</td>
<td>21.262</td>
<td>NEb</td>
</tr>
<tr>
<td>m07</td>
<td>19.795</td>
<td>28.444</td>
<td>23.457</td>
<td>NEb</td>
</tr>
<tr>
<td>m08</td>
<td>44.184</td>
<td>44.693</td>
<td>45.929</td>
<td>44.9</td>
</tr>
<tr>
<td>m09i</td>
<td>46.849</td>
<td>44.790</td>
<td>47.659</td>
<td>49.9</td>
</tr>
<tr>
<td>m10</td>
<td>55.668</td>
<td>49.366</td>
<td>59.558</td>
<td>55.5</td>
</tr>
<tr>
<td>m11</td>
<td>15.181</td>
<td>4.047</td>
<td>10.914</td>
<td>NEb</td>
</tr>
<tr>
<td>m12</td>
<td>34.929</td>
<td>32.402</td>
<td>40.500</td>
<td>38.6</td>
</tr>
<tr>
<td>m13</td>
<td>19.853</td>
<td>3.633</td>
<td>17.459</td>
<td>7.1</td>
</tr>
<tr>
<td>m14</td>
<td>12.814</td>
<td>27.708</td>
<td>18.398</td>
<td>25.4</td>
</tr>
<tr>
<td>m15</td>
<td>27.583</td>
<td>32.472</td>
<td>27.267</td>
<td>39.5</td>
</tr>
<tr>
<td>m16</td>
<td>46.283</td>
<td>40.906</td>
<td>49.411</td>
<td>57.8</td>
</tr>
<tr>
<td>m17</td>
<td>11.672</td>
<td>11.990</td>
<td>10.567</td>
<td>NEb</td>
</tr>
<tr>
<td>m18i</td>
<td>17.486</td>
<td>2.938</td>
<td>11.395</td>
<td>6.9</td>
</tr>
<tr>
<td>m19</td>
<td>-4.317</td>
<td>1.787</td>
<td>-3.540</td>
<td>6.5</td>
</tr>
<tr>
<td>m20i</td>
<td>8.111</td>
<td>0.757</td>
<td>9.897</td>
<td>NEb</td>
</tr>
<tr>
<td>m21</td>
<td>19.523</td>
<td>12.362</td>
<td>18.567</td>
<td>15.0</td>
</tr>
<tr>
<td>m22</td>
<td>28.477</td>
<td>38.709</td>
<td>34.021</td>
<td>43.5</td>
</tr>
<tr>
<td>m24</td>
<td>3.272</td>
<td>4.529</td>
<td>3.654</td>
<td>NEb</td>
</tr>
<tr>
<td>m26i</td>
<td>26.078</td>
<td>26.375</td>
<td>22.785</td>
<td>28.8</td>
</tr>
<tr>
<td>m27</td>
<td>30.565</td>
<td>36.282</td>
<td>32.857</td>
<td>25.6</td>
</tr>
<tr>
<td>m29</td>
<td>26.913</td>
<td>32.384</td>
<td>25.468</td>
<td>30.8</td>
</tr>
<tr>
<td>m30</td>
<td>31.770</td>
<td>24.320</td>
<td>24.300</td>
<td>20.3</td>
</tr>
<tr>
<td>m31</td>
<td>14.974</td>
<td>14.526</td>
<td>14.032</td>
<td>5.8</td>
</tr>
<tr>
<td>m32</td>
<td>27.532</td>
<td>35.448</td>
<td>30.296</td>
<td>21.8</td>
</tr>
<tr>
<td>m33i</td>
<td>11.593</td>
<td>24.405</td>
<td>13.955</td>
<td>22.6</td>
</tr>
</tbody>
</table>

aPercentage of photosynthesis inhibition; bnon effective: PI < 5 %.
Figure S1. Graphs of (a) $R^2 \times Q^2$; (b) $R^2_{(y,\text{rand})} \times R^2$; and (c) $R^2_{(y,\text{rand})} \times Q^2$ of the y-randomization test for 2D-QSAR model.

Figure S2. Graphs of (a) $R^2 \times Q^2$; (b) $R^2_{(y,\text{rand})} \times R^2$; and (c) $R^2_{(y,\text{rand})} \times Q^2$ of the y-randomization test for 3D-QSAR model.

Figure S3. Graphs of (a) $R^2 \times Q^2$; (b) $R^2_{(y,\text{rand})} \times R^2$; and (c) $R^2_{(y,\text{rand})} \times Q^2$ of the y-randomization test for hybrid-QSAR model.