Synthesis and Crystal Structures of new Complex Salts Containing both Cationic and Anionic Tellurium(IV) Species: The Role of Secondary Bonds in the Arrangement of Tellurium Based Tectons Sailer S. dos Santos, Ernesto S. Lang* and Robert A. Burrow Laboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil The NMR spectral data were obtained in a Varian Mercury Plus 7.05 T spectrometer with 300.07 MHz (1 H) and 94.74 MHz (125 Te). The samples were dissolved in a 9:1 mixture of acetone- d_6 and DMSO- d_6 , respectively. The solutions were measured in NMR tubes of 5 mm, at 300 K. The 1 H NMR chemical shifts are relative to Si(CH₂)₄ as internal reference. The 125 Te NMR spectra were taken with reference to Te(CH₃)₂. A capillary containing Te₂(C₆H₅)₂ dissolved in CDCl₃ (δ 450) was used as external reference. By convention, the chemical shift is positive when the resonance occurs at higher frequency than that of the reference. Figure S1. ¹H NMR spectrum of the compound 1. ^{*}e-mail: eslang@quimica.ufsm.br Figure S2. ¹H NMR spectrum of the compound 2. Figure S3. ¹H NMR spectrum of the compound 3. Figure S4. 125 Te NMR spectrum of the compound 1. **Figure S5.** ¹²⁵Te NMR spectrum of the compound **2**. **Figure S6.** ¹²⁵Te NMR spectrum of the compound **3**.