Synthesis and Characterization of $[\text{Cd}_8\text{Cl}_2\text{Se(SePh)}_{12}(\text{PCy}_3)_2] \cdot 2.5\text{CH}_3\text{OH}$

Rafael Stieler,a Fabrício Bublitz,a Robert A. Burrow,a Gelson N. Manzoni de Oliveira,a Marcos A. Villetti,b Marcelo B. Pereira,c Paulo Piquinib and Ernesto S. Lang*,a

aDepartamento de Química and bDepartamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil

cInstituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre-RS, Brazil

*e-mail: eslang@quimica.ufsm.br

Figure S1. Solid state diffuse reflectance measurements of $[\text{Cd}_8\text{Cl}_2(\mu_4-\text{Se})(\text{SePh})_{12}(\text{PCy}_3)_2] \ (\text{UV-Visible wavelength range})$.

*e-mail: eslang@quimica.ufsm.br
Table S1. Selected bond lengths (Å) and angles (°) refined from X-ray data for [Cd8Cl2(µ4-Se)(SePh)12(PCy3)2]·2.5CH3OH

<table>
<thead>
<tr>
<th>Bond Lengths</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Se(1)-Cd(2)</td>
<td>2.6361(8)</td>
<td>Se(1)-Cd(1)</td>
<td>2.6791(8)</td>
</tr>
<tr>
<td>Se(2)-Cd(3)</td>
<td>2.6247(8)</td>
<td>Se(2)-Cd(1)</td>
<td>2.6763(9)</td>
</tr>
<tr>
<td>Se(3)-Cd(4)</td>
<td>2.6408(9)</td>
<td>Se(3)-Cd(1)</td>
<td>2.7026(9)</td>
</tr>
<tr>
<td>Se(4)-Cd(2)</td>
<td>2.6320(8)</td>
<td>Se(4)-Cd(5)</td>
<td>2.6851(9)</td>
</tr>
<tr>
<td>Se(5)-Cd(3)</td>
<td>2.6154(9)</td>
<td>Se(5)-Cd(5)</td>
<td>2.6358(8)</td>
</tr>
<tr>
<td>Se(6)-Cd(6)</td>
<td>2.6166(9)</td>
<td>Se(6)-Cd(5)</td>
<td>2.6624(9)</td>
</tr>
<tr>
<td>Se(7)-Cd(3)</td>
<td>2.6277(9)</td>
<td>Se(7)-Cd(7)</td>
<td>2.6853(9)</td>
</tr>
<tr>
<td>Se(8)-Cd(4)</td>
<td>2.6248(9)</td>
<td>Se(8)-Cd(7)</td>
<td>2.6532(9)</td>
</tr>
<tr>
<td>Se(9)-Cd(6)</td>
<td>2.6261(9)</td>
<td>Se(9)-Cd(7)</td>
<td>2.6483(9)</td>
</tr>
<tr>
<td>Se(10)-Cd(2)</td>
<td>2.6461(9)</td>
<td>Se(10)-Cd(8)</td>
<td>2.6678(9)</td>
</tr>
<tr>
<td>Se(11)-Cd(6)</td>
<td>2.6400(9)</td>
<td>Se(11)-Cd(8)</td>
<td>2.6965(10)</td>
</tr>
<tr>
<td>Se(12)-Cd(4)</td>
<td>2.6546(8)</td>
<td>Se(12)-Cd(8)</td>
<td>2.6741(10)</td>
</tr>
<tr>
<td>Se(13)-Cd(4)</td>
<td>2.5768(8)</td>
<td>Se(13)-Cd(2)</td>
<td>2.5798(8)</td>
</tr>
<tr>
<td>P(1)-Cd(1)</td>
<td>2.613(2)</td>
<td>P(1)-Cd(7)</td>
<td>2.6148(18)</td>
</tr>
<tr>
<td>Cl(1)-Cd(5)</td>
<td>2.458(2)</td>
<td>Cl(2)-Cd(7)</td>
<td>2.461(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond Angles</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(2)-Se(4)-Cd(5)</td>
<td>101.40(3)</td>
<td>C(51)-Se(5)-Cd(3)</td>
<td>96.3(2)</td>
</tr>
<tr>
<td>C(51)-Se(5)-Cd(5)</td>
<td>105.3(2)</td>
<td>Cd(3)-Se(5)-Cd(5)</td>
<td>98.01(3)</td>
</tr>
<tr>
<td>C(61)-Se(6)-Cd(6)</td>
<td>99.7(2)</td>
<td>C(61)-Se(6)-Cd(5)</td>
<td>103.5(2)</td>
</tr>
<tr>
<td>Cd(3)-Se(7)-Cd(7)</td>
<td>102.01(3)</td>
<td>Cd(6)-Se(7)-Cd(7)</td>
<td>98.24(3)</td>
</tr>
<tr>
<td>C(81)-Se(8)-Cd(4)</td>
<td>97.1(2)</td>
<td>C(81)-Se(8)-Cd(7)</td>
<td>108.1(2)</td>
</tr>
<tr>
<td>Cd(4)-Se(8)-Cd(7)</td>
<td>96.66(3)</td>
<td>Cd(6)-Se(9)-Cd(7)</td>
<td>96.38(3)</td>
</tr>
<tr>
<td>Cd(2)-Se(10)-Cd(8)</td>
<td>102.15(3)</td>
<td>Cd(6)-Se(11)-Cd(8)</td>
<td>103.07(3)</td>
</tr>
<tr>
<td>Cd(4)-Se(12)-Cd(8)</td>
<td>106.22(3)</td>
<td>Cd(4)-Se(13)-Cd(2)</td>
<td>107.00(3)</td>
</tr>
<tr>
<td>Cd(4)-Se(13)-Cd(3)</td>
<td>110.15(3)</td>
<td>Cd(2)-Se(13)-Cd(3)</td>
<td>108.00(3)</td>
</tr>
<tr>
<td>Cd(4)-Se(13)-Cd(6)</td>
<td>112.84(3)</td>
<td>Cd(2)-Se(13)-Cd(6)</td>
<td>111.81(3)</td>
</tr>
<tr>
<td>Cd(3)-Se(13)-Cd(6)</td>
<td>106.96(3)</td>
<td>P(1)-Cd(1)-Se(2)</td>
<td>108.18(5)</td>
</tr>
<tr>
<td>P(1)-Cd(1)-Se(1)</td>
<td>111.49(5)</td>
<td>Se(2)-Cd(1)-Se(1)</td>
<td>111.36(3)</td>
</tr>
<tr>
<td>P(1)-Cd(1)-Se(3)</td>
<td>116.68(5)</td>
<td>Se(2)-Cd(1)-Se(3)</td>
<td>105.42(3)</td>
</tr>
<tr>
<td>Se(1)-Cd(1)-Se(3)</td>
<td>103.54(3)</td>
<td>Se(13)-Cd(2)-Se(4)</td>
<td>101.43(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(2)-Se(1)</td>
<td>108.29(3)</td>
<td>Se(4)-Cd(2)-Se(1)</td>
<td>116.52(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(2)-Se(10)</td>
<td>102.98(3)</td>
<td>Se(4)-Cd(2)-Se(10)</td>
<td>113.16(3)</td>
</tr>
<tr>
<td>Se(1)-Cd(2)-Se(10)</td>
<td>112.72(3)</td>
<td>Se(13)-Cd(3)-Se(5)</td>
<td>105.09(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(3)-Se(2)</td>
<td>103.77(3)</td>
<td>Se(5)-Cd(3)-Se(2)</td>
<td>112.61(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(3)-Se(7)</td>
<td>100.72(3)</td>
<td>Se(5)-Cd(3)-Se(7)</td>
<td>119.42(3)</td>
</tr>
<tr>
<td>Se(2)-Cd(3)-Se(7)</td>
<td>112.80(3)</td>
<td>Se(13)-Cd(4)-Se(8)</td>
<td>104.89(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(4)-Se(3)</td>
<td>105.29(3)</td>
<td>Se(8)-Cd(4)-Se(3)</td>
<td>111.80(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(4)-Se(12)</td>
<td>99.09(3)</td>
<td>Se(8)-Cd(4)-Se(12)</td>
<td>114.69(3)</td>
</tr>
<tr>
<td>Se(3)-Cd(4)-Se(12)</td>
<td>118.67(3)</td>
<td>C(1)-Cd(5)-Se(5)</td>
<td>110.08(6)</td>
</tr>
<tr>
<td>Cl(1)-Cd(5)-Se(6)</td>
<td>106.97(6)</td>
<td>Se(5)-Cd(5)-Se(6)</td>
<td>110.72(3)</td>
</tr>
<tr>
<td>Cl(1)-Cd(5)-Se(4)</td>
<td>109.33(6)</td>
<td>Se(5)-Cd(5)-Se(4)</td>
<td>107.94(3)</td>
</tr>
<tr>
<td>Se(6)-Cd(5)-Se(4)</td>
<td>111.80(3)</td>
<td>Se(13)-Cd(6)-Se(6)</td>
<td>105.10(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(6)-Se(9)</td>
<td>105.99(3)</td>
<td>Se(6)-Cd(6)-Se(9)</td>
<td>114.63(3)</td>
</tr>
<tr>
<td>Se(13)-Cd(6)-Se(11)</td>
<td>101.71(3)</td>
<td>Se(6)-Cd(6)-Se(11)</td>
<td>113.90(3)</td>
</tr>
<tr>
<td>Se(9)-Cd(6)-Se(11)</td>
<td>113.84(3)</td>
<td>Cl(2)-Cd(7)-Se(8)</td>
<td>102.32(6)</td>
</tr>
<tr>
<td>Cl(2)-Cd(7)-Se(8)</td>
<td>107.93(7)</td>
<td>Se(9)-Cd(7)-Se(8)</td>
<td>118.50(3)</td>
</tr>
<tr>
<td>Cl(2)-Cd(7)-Se(7)</td>
<td>110.50(7)</td>
<td>Se(9)-Cd(7)-Se(7)</td>
<td>108.76(3)</td>
</tr>
<tr>
<td>Se(8)-Cd(7)-Se(7)</td>
<td>108.59(3)</td>
<td>P(2)-Cd(8)-Se(10)</td>
<td>113.68(6)</td>
</tr>
<tr>
<td>P(2)-Cd(8)-Se(12)</td>
<td>117.81(8)</td>
<td>Se(10)-Cd(8)-Se(12)</td>
<td>102.39(3)</td>
</tr>
<tr>
<td>P(2)-Cd(8)-Se(11)</td>
<td>105.78(7)</td>
<td>Se(10)-Cd(8)-Se(11)</td>
<td>109.11(3)</td>
</tr>
<tr>
<td>Se(12)-Cd(8)-Se(11)</td>
<td>107.80(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>