Synthesis and Antioxidant Activity of 1,4-[Bis(3-arylmethanesulfonyl pyrrolyl and pyrazolyl)]benzenes

Gopala Lavanya, Venkatapuram Padmavathi and Adivreddy Padmaja*

Department of Chemistry, Sri Venkateswara University, 517 502 Tirupati, Andhra Pradesh, India

A variety of (1,4-phenylene)bis(arylmethanesulfonylpyrroles and pyrazoles) were prepared by the cycloaddition of 1,3-dipolar reagents, tosylmethyl isocyanide and diazomethane to the Michael acceptor, 1,4-bis(E)-2-((arylmethanesulfonyl)vinyl)benzene. All the compounds were evaluated for antioxidant activity. Amongst the tested compounds, one of them displayed excellent radical scavenging activity in all the three methods evaluated when compared with the standard Ascorbic acid. On the other hand, 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrazol-4-yl)benzenes exhibited comparatively higher antioxidant activity than 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrrol-4-yl) benzenes. In general, it was observed that compounds having methoxy substituent on aromatic ring displayed greater antioxidant activity than the other substituents.

Keywords: Michael acceptor, pyrrole, pyrazoline, pyrazole, antioxidant activity

Introduction

The chemistry of activated olefins has gained importance because of their utility as valuable intermediates in a variety of synthetic transformations and useful as building blocks in the synthesis of biologically potent heterocycles. The α,β-unsaturated sulfones possess many biological properties including anticancer, antimalarial, anti-inflammatory, antioxidant, antibacterial, anti-HIV, and antifungal. They are also excellent leading skeletons for modification of drug design and development. Pyrroles and their derivatives represent one of the most pharmaceutically important class of N-heterocyclic compounds because of their remarkable antibacterial, antiviral, anti-inflammatory, antitumoral, and antioxidant activities. Apart from these, pyrroles are the core units of many natural products and serve as building blocks for porphyrin synthesis. Besides the Paal-Knorr type condensation reaction, various synthetic methods have been developed to synthesize pyroles, including Hantzsch synthesis, [3+2] cycloaddition of 1,3-dipolar reagents to alkynes, and olefin cross-metathesis. Pyrazole and its derivatives have been attracting a great deal of interest due to their various pharmaceutical applications. Pyrazoles display antimicrobial, antidepressant, immunosuppressive, anticonvulsant, antitumor, and anti-inflammatory activities. In fact, various pyrazoles were used as molecular scaffolds in several drugs such as metamizole, difenamizole, lonazolac, phenidone, and mepirizole. The general methods for the synthesis of pyrazoles are Pechmann synthesis of 1,3-dipolar cycloaddition of diazo compounds to alkenes or alkynes and the Knorr synthesis between hydrazines and 1,3-difunctional compounds. We have reported the 1,3-dipolar cycloaddition of dipolar reagents to a variety of activated mono and bis(olefins) and studied their antimicrobial and antioxidant activities.
background and in our continued interest on the synthesis of biologically potent heterocycles, it was thought of exploiting the Michael acceptor, 1,4-bis(E)-2-((arylmethanesulfonyl) vinyl)benzene to build pyrrole and pyrazole rings and to investigate their antioxidant potentiality.

Results and Discussion

The synthetic pathway to achieve the target molecules is depicted in schemes 1 and 2. The Michael acceptor, 1,4-bis(E)-2-((arylmethanesulfonyl)vinyl)benzenes (5a-d) were prepared by the Knoevenagel reaction of arylmethanesulfonylacetic acids (3a-d) with terephthaldehyde (4). The compounds 3a-d were obtained by the treatment of arylmethane chloride with thioglycolic acid followed by oxidation with hydrogen peroxide and glacial acetic acid. The 1H NMR spectrum of compound 5a displayed a singlet at 4.55 ppm due to methylene protons and two doublets at 7.52, and 7.48 ppm due to olefin protons H_A and H_B, respectively. The coupling constant value J_AB = 15.5 Hz indicated that they are in trans geometry (Scheme 1).

The olefin functional group present in compounds 5a-d was utilized to develop pyrrole and pyrazole rings. Treatment of compounds 5a-d with tosylmethyl isocyanide in the presence of sodium hydride in a solvent mixture of dimethylsulfoxide and ether gave 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrrol-4-yl)benzenes (6a-d). The 1H NMR spectrum of 6a exhibited a singlet at 4.23 ppm due to methylene protons. However, the singlets corresponding to 2CH of pyrrole ring were merged with aromatic protons and appeared as a multiplet. In addition to these, a broad singlet was observed at 11.85 ppm due to NH which disappeared on deuteration. Thus, in the 1H NMR spectrum of 7a the two pyrazoline ring protons displayed signals in the same region indicating that the molecule is highly symmetric. This was further evidenced by the appearance of 10 carbon signals in its 13C NMR spectrum. The reaction of compounds 7a-d with chloranil in xylene resulted in aromatized compounds 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrazol-4-yl)benzenes (8a-d) (Scheme 2). The absence of an AMX splitting pattern in the 1H NMR spectrum of 8a confirmed its formation. Moreover in 8a, a singlet at 4.62 ppm, and another singlet at 6.92 ppm were observed due to methylene and CH protons, respectively. A broad singlet due to NH was also appeared at 10.40 ppm, and disappeared when D_2O was added. The structures of the compounds were further established by IR, 13C NMR spectra and elemental analyses.

In vitro antioxidant activity

The compounds 5a-d-8a-d were evaluated for antioxidant property by 2,2’-diphenyl-1-picyrylhydrazyl (DPPH), nitric oxide (NO), and hydrogen peroxide (H_2O_2) methods. The observed data on the antioxidant activity of the compounds and control drug are shown in Table 1 and Figure 1. The aim of this study is to identify

![Scheme 1](image-url)
the potential heterocyclic compound for antioxidant activity. Amongst the tested compounds 1,4-bis(E)-2-((arylmethanesulfonyl)-vinyl)benzenes (5a-d) were found to be potential antioxidant agents. This may be due to effective conjugation. On the other hand, the 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrazol-4-yl)benzenes (8a-d) exhibited comparatively higher antioxidant activity than 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrrol-4-yl)benzenes (6a-d). The presence of methoxy substituent on the aromatic ring enhanced the activity which may be due to +M effect. This was evidenced that the compounds 5d and 8d showed excellent radical scavenging activity in all the three methods evaluated when compared with the standard ascorbic acid. It was also perceived that the compounds 5b, 6d, and 8b exhibited good activity. However, the compound 7d displayed least activity, whereas compounds 7a-c showed no activity. The IC50 value of the standard drug ascorbic acid in DPPH method was found to be 59.65 at 100 µg mL\(^{-1}\) whereas IC50 values of the compounds 5d and 8d were found to be 56.45 and 57.08 µg mL\(^{-1}\), respectively (Table 2). Besides, the perusal of Table 1 and Figure 1 indicated that radical scavenging activity in all the three

<table>
<thead>
<tr>
<th>Compd. No.</th>
<th>DPPH Method (%)</th>
<th>NO Method (%)</th>
<th>(\text{H}_2\text{O}_2) Method (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>5a</td>
<td>66.20 ± 0.31</td>
<td>70.75 ± 0.27</td>
<td>72.69 ± 0.24</td>
</tr>
<tr>
<td>5b</td>
<td>72.18 ± 0.09</td>
<td>76.67 ± 0.08</td>
<td>79.35 ± 0.06</td>
</tr>
<tr>
<td>5c</td>
<td>57.72 ± 0.54</td>
<td>62.24 ± 0.45</td>
<td>64.23 ± 0.39</td>
</tr>
<tr>
<td>5d</td>
<td>82.12 ± 0.07</td>
<td>85.79 ± 0.04</td>
<td>88.56 ± 0.02</td>
</tr>
<tr>
<td>6a</td>
<td>50.26 ± 0.48</td>
<td>53.06 ± 0.46</td>
<td>55.11 ± 0.38</td>
</tr>
<tr>
<td>6b</td>
<td>54.15 ± 0.42</td>
<td>57.36 ± 0.34</td>
<td>60.54 ± 0.30</td>
</tr>
<tr>
<td>6c</td>
<td>48.07 ± 0.63</td>
<td>50.12 ± 0.56</td>
<td>52.37 ± 0.40</td>
</tr>
<tr>
<td>6d</td>
<td>69.83 ± 0.32</td>
<td>71.69 ± 0.26</td>
<td>73.24 ± 0.22</td>
</tr>
<tr>
<td>7a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7b</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7c</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7d</td>
<td>39.48 ± 0.79</td>
<td>41.05 ± 0.73</td>
<td>44.76 ± 0.71</td>
</tr>
<tr>
<td>8a</td>
<td>62.40 ± 0.43</td>
<td>65.81 ± 0.48</td>
<td>69.72 ± 0.27</td>
</tr>
<tr>
<td>8b</td>
<td>70.31 ± 0.24</td>
<td>73.64 ± 0.18</td>
<td>75.46 ± 0.15</td>
</tr>
<tr>
<td>8c</td>
<td>55.53 ± 0.57</td>
<td>57.75 ± 0.52</td>
<td>61.80 ± 0.47</td>
</tr>
<tr>
<td>8d</td>
<td>78.48 ± 0.16</td>
<td>82.18 ± 0.11</td>
<td>87.59 ± 0.12</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>77.15 ± 0.42</td>
<td>80.95 ± 0.39</td>
<td>83.82 ± 0.81</td>
</tr>
<tr>
<td>Blank</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(-) Showed no scavenging activity. Values were the means of three replicates ± SD.
methods increases with increase in concentration.

Experimental

Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The purity of the compounds was checked by TLC (silica gel H, BDH, ethyl acetate/hexane, 1:3). The IR spectra were recorded on a Thermo Nicolet IR 200 FT–IR spectrometer as KBr pellets and the wave numbers were given in cm\(^{-1}\). The \(^1\)H NMR spectra were recorded in DMSO-\(d_6\) on a Bruker-400 spectrometer (400 MHz). The \(^13\)C NMR spectra were recorded in DMSO-\(d_6\) on a Bruker spectrometer operating at 100 MHz. All chemical shifts are reported in \(\delta\) (ppm) using TMS as an internal standard. The elemental analyses were carried out on a Perkin-Elmer 240C elemental analyzer. The antioxidant property was performed by using Shimadzu UV-2450 spectrophotometer. The arylmethanesulfonylactic acids (3a-d) were prepared as per the literature procedure.\(^ {37}\)

General procedure for the synthesis of 1,4-bis(\(E\))-2-((aryl methanesulfonyl)vinyl)benzenes (5a-d)

To a solution of arylmethanesulfonylactic acids (3a-d) (2 mmol) in glacial acetic acid (10 mL\(^{-1}\)), terephthaldehyde (4) (1 mmol) followed by a catalytic amount of benzylamine (0.20 mL) were added and refluxed for 6-8 h. The reaction mixture was cooled, treated with dry ether (50 mL\(^{-1}\)) and left overnight in a refrigerator. The separated solid was collected and washed with methanol. The filtrate was diluted with ether and washed successively with a saturated solution of sodium bicarbonate, sodium bisulfite, dilute hydrochloric acid and water. The organic layer was dried over anhydrous sodium sulfate. In many cases, a solid product was obtained on removal of ether under reduced pressure. However, in some instances a syrupy substance was obtained which was solidified on treatment with 2-propanol.

![Figure 1](image-url)
Figure 1. The in-vitro antioxidant activity of compounds 5a-d-8a-d in all three methods.

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>IC(_{50}) / (\mu)mol mL(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>0.156 ± 0.63</td>
</tr>
<tr>
<td>5b</td>
<td>0.135 ± 0.47</td>
</tr>
<tr>
<td>5c</td>
<td>0.153 ± 0.89</td>
</tr>
<tr>
<td>5d</td>
<td>0.111 ± 0.51</td>
</tr>
<tr>
<td>6a</td>
<td>0.175 ± 0.78</td>
</tr>
<tr>
<td>6b</td>
<td>0.151 ± 0.65</td>
</tr>
<tr>
<td>6c</td>
<td>0.163 ± 0.94</td>
</tr>
<tr>
<td>6d</td>
<td>0.118 ± 0.42</td>
</tr>
<tr>
<td>7a</td>
<td>-</td>
</tr>
<tr>
<td>7b</td>
<td>-</td>
</tr>
<tr>
<td>7c</td>
<td>-</td>
</tr>
<tr>
<td>7d</td>
<td>0.191 ± 0.38</td>
</tr>
<tr>
<td>8a</td>
<td>0.138 ± 0.54</td>
</tr>
<tr>
<td>8b</td>
<td>0.121 ± 0.71</td>
</tr>
<tr>
<td>8c</td>
<td>0.097 ± 0.45</td>
</tr>
<tr>
<td>8d</td>
<td>0.098 ± 0.29</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>0.124 ± 0.64</td>
</tr>
<tr>
<td>Blank</td>
<td>-</td>
</tr>
</tbody>
</table>
128.0, 128.8, 129.1, 129.6, 131.5, 135.1, 142.5; calcd. for C_{28}H_{28}O_{12}S_{2}: m/z 438.56; C, 65.73; H, 5.06.

1.4-Bis(E)-2-((p-methylphenylmethanesulfonyl)vinyl) benzene (5b)

mp 243-245 °C; IR (KBr) ν_{max}/cm⁻¹ 1615, 1329, 1143; ¹H NMR (400 MHz, DMSO-d₆) δ 2.41 (s, 6H, CH₃), 4.52 (s, 4H, CH₂), 7.45 (d, 2H, J₈±9 15.6, CH), 7.51 (d, 2H, J₈±9 15.6, CH), 7.28-7.71 (m, 12H, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 24.7, 59.5, 128.3, 129.0, 129.5, 129.8, 131.6, 135.4, 142.7; calcd. for C_{28}H_{28}O_{12}S_{2}: m/z 466.61; C, 66.92; H, 5.52.

1.4-Bis(E)-2-((p-chlorophenylmethanesulfonyl)vinyl) benzene (5c)

mp 260-262 °C; IR (KBr) ν_{max}/cm⁻¹ 1627, 1346, 1138; ¹H NMR (400 MHz, DMSO-d₆) δ 4.60 (s, 4H, CH₂), 7.52 (d, 2H, J₈±9 15.9, CH), 7.58 (d, 2H, J₈±9 15.9, CH), 7.46-7.83 (m, 12H, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 60.5, 128.4, 129.9, 130.2, 130.9, 131.8, 135.3, 143.1; calcd. for C_{28}H_{28}Cl_{10}O_{12}S_{2}: m/z 507.45; C, 56.81; H, 3.97.

1.4-Bis(E)-2-((p-methoxyphenylmethanesulfonyl)vinyl) benzene (5d)

mp 259-261 °C; IR (KBr) ν_{max}/cm⁻¹ 1625, 1338, 1140; ¹H NMR (400 MHz, DMSO-d₆) δ 3.92 (s, 6H, OCH₃), 4.58 (s, 4H, CH₂), 7.50 (d, 2H, J₈±9 15.7, CH), 7.55 (d, 2H, J₈±9 -15.7, CH), 7.42-7.78 (m, 12H, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 55.3, 59.2, 128.5, 129.3, 129.7, 130.0, 131.4, 135.6, 142.9; calcd. for C_{28}H_{28}O_{12}S_{2}: m/z 498.61; C, 62.63; H, 5.26.

General procedure for the synthesis of 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrrol-4-yl)benzenes (6a-d)

The compounds 5a-d (1 mmol) and tosylmethyl isocyanide (2 mmol) in ether-dimethylsulfoxide (2:1) was added dropwise under stirring to a stirred suspension of sodium hydride (50 mg) in ether (20 mL) at room temperature and stirring was continued for 8-10 h. Then, water was added to the reaction mixture and extracted with ether. The ethereal layer was dried over anhydrous sodium sulfate and filtered. Evaporation of the solvent under vacuum gave a crude product which was purified by column chromatography (silica gel, 60-120 mesh) using hexane and ethyl acetate (4:1) as eluent.

1.4-(Bis(3-phenylmethanesulfonyl)-1H-pyrrol-4-yl)benzene (6a)

mp 245-247 °C; IR (KBr) ν_{max}/cm⁻¹ 3258, 1624, 1339, 1145; ¹H NMR (400 MHz, DMSO-d₆) δ 4.23 (s, 4H, CH₂), 7.01-7.75 (m, 18H, 2CH, Ar-H), 11.85 (bs, 2H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 60.9, 118.6, 120.0, 122.5, 126.3, 128.0, 129.1, 130.5, 131.9; calcd. for C_{28}H_{28}N_{10}O_{12}S_{2}: m/z 516.63; C, 65.09; H, 4.68; N, 5.42. Found: C, 65.18; H, 4.71; N, 5.36.

1.4-(Bis(3-p-methylphenylmethanesulfonyl)-1H-pyrrol-4-yl)benzene (6b)

mp 252-254 °C; IR (KBr) ν_{max}/cm⁻¹ 3255, 1621, 1332, 1144; ¹H NMR (400 MHz, DMSO-d₆) δ 2.39 (s, 6H, CH₃), 4.21 (s, 4H, CH₂), 6.98-7.72 (m, 16H, 2CH, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 24.5, 60.6, 118.2, 119.7, 121.5, 126.0, 127.6, 128.2, 130.1, 131.7, 132.4; calcd. for C_{28}H_{28}Cl_{10}O_{12}S_{2}: 544.68; C, 66.15; H, 5.18; N, 5.14. Found: C, 66.26; H, 5.23; N, 5.30.

1.4-(Bis(3-p-chlorophenylmethanesulfonyl)-1H-pyrrol-4-yl) benzene (6c)

mp 275-277 °C; IR (KBr) ν_{max}/cm⁻¹ 3269, 1632, 1345, 1150; ¹H NMR (400 MHz, DMSO-d₆) δ 4.36 (s, 4H, CH₂), 7.09-7.83 (m, 16H, 2CH, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 61.8, 119.4, 120.7, 123.2, 127.8, 127.5, 130.8, 131.3, 132.7, 133.4; calcd. for C_{28}H_{28}Cl_{10}O_{12}S_{2}: m/z 585.52; C, 57.44; H, 3.79; N, 4.78. Found: C, 57.50; H, 3.80; N, 4.88.

1.4-(Bis(3-p-methoxyphenylmethanesulfonyl)-1H-pyrrol-4-yl)benzene (6d)

mp 268-270 °C; IR (KBr) ν_{max}/cm⁻¹ 3253, 1637, 1341, 1142; ¹H NMR (400 MHz, DMSO-d₆) δ 3.89 (s, 6H, OCH₃), 4.34 (s, 4H, CH₂), 7.06-7.80 (m, 16H, 2CH, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 55.1, 61.5, 119.2, 120.4, 122.8, 127.1, 130.4, 131.0, 132.2, 132.6, 133.5; calcd. for C_{28}H_{28}N_{10}O_{12}S_{2}: m/z 576.68; found: 576.69; C, 62.48; H, 4.89; N, 4.86. Found: C, 62.55; H, 4.93; N, 4.97.

General procedure for the synthesis of 1,4-(bis(3-arylmethanesulfonyl)-4,5-dihydro-(1H-pyrazol-4-yl))benzenes (7a-d)

To a well cooled solution of compounds 5a-d (0.25 mmol) in dichloromethane (20 mL), an ice-cold ethereal solution of diazomethane (40 mL, 0.4 mol L⁻¹) and triethylamine (0.2 g) were added. The reaction mixture was kept at −20 °C to −15 °C for 40-48 h. The solvent was removed under reduced pressure and the resultant solid was purified by column chromatography (silica gel, 60-120 mesh) using ethyl acetate and hexane (1:4) as eluent.
1,4-(Bis(3-phenylmethanesulfonyl)-4,5-dihydro-(1H-pyrazol-4-yl))benzene (7a)

mp 237-239 °C; IR (KBr) Φν/cm⁻¹ 3267, 1576, 1331, 1141; ¹H NMR (400 MHz, DMSO-d₆) δ 3.75 (dd, 2H, Jₓ 6.4, Hₓ, CHₓ), 4.58 (s, 4H, CHₓ), 4.17 (dd, 2H, Jₓ 11.6, Hₓ, CHₓ), 4.46 (dd, 2H, Jₓ 12.2, Hₓ, CHₓ), 6.53 (bs, 2H, NH), 7.16-7.85 (m, 14H, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 37.4, 57.6, 58.3, 124.8, 125.5, 126.9, 127.3, 132.3, 134.2, 156.9; calcd. for C₃₂H₂₄N₂O₇S; m/z 522.64; C, 59.75; H, 5.01; N, 10.72. Found: C, 59.86; H, 4.99; N, 10.97.

1,4-(Bis(3-p-methylphenylmethanesulfonyl)-4,5-dihydro-(1H-pyrazol-4-yl))benzene (7b)

mp 252-254 °C; IR (KBr) Φν/cm⁻¹ 3268, 1574, 1346, 1152; ¹H NMR (400 MHz, DMSO-d₆) δ 2.36 (s, 6H, CH₃), 3.72 (dd, 2H, Jₓ 6.1, Hₓ, CHₓ), 4.57 (s, 4H, CHₓ), 4.12 (dd, 2H, Jₓ 11.2, Hₓ, CHₓ), 4.34 (dd, 2H, Jₓ 12.0, Hₓ, CHₓ), 6.54 (bs, 2H, NH), 7.09-7.78 (m, 12H, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 23.1, 37.2, 57.2, 57.4, 125.1, 125.9, 126.7, 127.4, 130.5, 132.8, 155.7; calcd. for C₃₂H₂₄N₂O₇S; m/z 550.69; C, 61.07; H, 5.49; N, 10.17. Found: C, 61.16; H, 5.54; N, 10.29.

1,4-(Bis(3-p-chlorophenylmethanesulfonyl)-4,5-dihydro-(1H-pyrazol-4-yl))benzene (7c)

mp 258-260 °C; IR (KBr) Φν/cm⁻¹ 3272, 1582, 1349, 1135; ¹H NMR (400 MHz, DMSO-d₆) δ 3.85 (dd, 2H, Jₓ 6.7, Hₓ, CHₓ), 4.51 (s, 4H, CHₓ), 4.23 (dd, 2H, Jₓ 11.9, Hₓ, CHₓ), 4.56 (dd, 2H, Jₓ 12.5, Hₓ, CHₓ), 6.53 (bs, 2H, NH), 7.23-7.92 (m, 12H, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆) δ 37.7, 57.1 (C-5), 58.5, 125.2, 126.5, 127.7, 132.1, 133.8, 134.4, 156.8; calcd. for C₂₅H₁₉Cl₂N₂O₇S; m/z 591.53; C, 52.79; H, 4.09; N, 9.47. Found: C, 57.79; H, 5.21; N, 9.75.

General procedure for the synthesis of 1,4-(bis(3-arylmethanesulfonyl)-1H-pyrazol-4-yl)benzenes (8a-d)

A solution of compounds 7a-d (1 mmol) and chloranil (2.4 mmol) in xylene (10 mL) was refluxed for 24-27 h. Then, it was treated with 5% sodium hydroxide solution. The organic extract was separated, repeatedly washed with water and dried anhydrous sodium sulfate. The solvent was removed in vacuo. The resultant solid was recrystallized from 2-propanol.

1,4-(Bis(3-phenylsulfonyl)-1H-pyrazol-4-yl)benzene (8a)

mp 264-266 °C; IR (KBr) Φν/cm⁻¹ 3266, 1618, 1580, 1328, 1149; ¹H NMR (400 MHz, DMSO-d₆) δ 4.62 (s, 4H, CHₓ), 6.92 (s, 2H, CHₓ), 7.63-8.09 (m, 12H, Ar-H), 10.40 (bs, 2H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 58.4, 129.6, 132.0, 133.8, 134.3, 135.5, 136.7, 137.1, 137.7; calcd. for C₂₅H₂₂N₂O₄S; m/z 518.61; C, 60.21; H, 4.28; N, 10.80. Found: C, 60.32; H, 4.34; N, 10.96.

1,4-(Bis(3-p-methylphenylsulfonyl)-1H-pyrazol-4-yl)benzene (8b)

mp 251-253 °C; IR (KBr) Φν/cm⁻¹ 3272, 1614, 1578, 1339, 1152; ¹H NMR (400 MHz, DMSO-d₆) δ 2.43 (s, 6H, CH₃), 4.60 (s, 4H, CHₓ), 6.87 (s, 2H, CHₓ), 7.55-8.01 (m, 12H, Ar-H), 10.36 (bs, 2H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 23.7, 57.9, 129.4, 123.6, 124.9, 125.4, 126.1, 133.3, 133.7, 134.8, 137.3; calcd. for C₂₅H₂₂N₂O₄S; m/z 546.66; C, 61.52; H, 4.79; N, 10.25. Found: C, 61.48; H, 4.80; N, 10.38.

1,4-(Bis(3-p-chlorophenylsulfonyl)-1H-pyrazol-4-yl)benzene (8c)

mp 287-289 °C; IR (KBr) Φν/cm⁻¹ 3274, 1621, 1591, 1347, 1155; ¹H NMR (400 MHz, DMSO-d₆) δ 4.64 (s, 4H, CHₓ), 6.96 (s, 2H, CHₓ), 7.69-8.16 (m, 12H, Ar-H), 10.45 (bs, 2H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 58.6, 130.3, 133.0, 134.5, 134.6, 135.2, 136.8, 137.3, 138.1, 139.7; calcd. for C₂₅H₂₂N₂O₄S; m/z 587.50; C, 53.15; H, 3.43; N, 9.54. Found: C, 53.22; H, 3.41; N, 9.65.

1,4-(Bis(3-p-methoxyphenylsulfonyl)-1H-pyrazol-4-yl)benzene (8d)

mp 272-274 °C; IR (KBr) Φν/cm⁻¹ 3278, 1626, 1575, 1340, 1148; ¹H NMR (400 MHz, DMSO-d₆) δ 3.83 (s, 6H, OCH₃), 4.66 (s, 4H, CHₓ), 6.94 (s, 2H, CHₓ), 7.66-8.12 (m, 12H, Ar-H), 10.42 (bs, 2H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 55.7, 58.2, 129.9, 133.1, 134.2, 134.5, 135.7, 136.4, 137.2, 137.9, 138.8; calcd. for C₂₅H₂₂N₂O₄S; m/z 578.66; C, 58.12; H, 4.53; N, 9.68. Found: C, 58.21; H, 4.56; N, 9.82.

Antioxidant testing

The compounds 5a-d-8a-d were tested for antioxidant property by DPPH, NO, and H₂O₂ methods.
Antioxidant assays

DPPH radical scavenging activity

The hydrogen atom or electron donation ability of the compounds was measured from the bleaching of the purple colored methanol solution of 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH). The spectrophotometric assay uses the stable radical DPPH as a reagent. To 4 mL of 0.004% w/v methanol solution of DPPH, 1 mL of various concentrations of the test compounds (50, 75, and 100 µg ml⁻¹) in methanol were added. After a 30 min incubation period at room temperature, the absorbance was read against blank at 517 nm. Ascorbic acid was used as the standard. The percentage of inhibition (I%) of free radical production from DPPH was calculated by the following equation

\[I\% = \frac{(A_{\text{control}} - A_{\text{sample}})}{A_{\text{control}}} \times 100 \]

where \(A_{\text{control}} \) is the absorbance of the control reaction (containing methanolic DPPH and ascorbic acid), \(A_{\text{sample}} \) is the absorbance of the test compound (containing methanolic DPPH and test compound), and \(A_{\text{blank}} \) is the absorbance of the blank (containing only methanolic DPPH). Tests were carried out in triplicate.

The IC₅₀ was calculated by the following equation

\[\text{IC}_{50} = \left(50 \times \frac{100}{\% \text{ Inhibition}} \right) \]

\[\text{IC}_{50} \text{ in µg mL}^{-1} = \left(50 \times \frac{100}{\% \text{ Inhibition}} \right) \]

Nitric oxide (NO) radical scavenging activity

Nitric oxide scavenging activity was measured by slightly modified methods of Green et al. and Marcocci et al. Nitric oxide radicals (NO) were generated from sodium nitroprusside. 1 mL of sodium nitroprusside (10 mmol L⁻¹) and 1.5 mL of phosphate buffer saline (0.2 M, pH 7.4) were added to different concentrations (50, 75, and 100 µg ml⁻¹) of the test compounds and incubated for 150 min at 25 °C. After incubation 1 mL of the reaction mixture was treated with 1 mL of Griess reagent (1% sulfanilamide, 2% H₃PO₄, and 0.1% naphthylethylene diamine dihydrochloride). The absorbance of the chromatophore was measured at 546 nm. Ascorbic acid was used as standard. Nitric oxide scavenging activity was calculated by the following equation

\[\% \text{ of scavenging} = \left(\frac{|A_{\text{control}} - A_{\text{sample}}|}{A_{\text{blank}}} \right) \times 100 \]

where \(A_{\text{control}} \) is the absorbance of the control reaction (containing all reagents and ascorbic acid), \(A_{\text{sample}} \) is the absorbance of the test compound (containing all reagents and test compound) and \(A_{\text{blank}} \) is the absorbance of the blank (containing only reagents). Tests were carried out in triplicate.

Hydrogen peroxide (H₂O₂) radical scavenging activity

The H₂O₂ scavenging ability of the test compound was determined according to the method of Ruch et al.³⁶ A solution of H₂O₂ (40 mmol L⁻¹) was prepared in phosphate buffer (pH 7.4). The different concentrations of the test compounds 50, 75, and 100 µg ml⁻¹ in 3.4 mL⁻¹ phosphate buffer were added to H₂O₂ solution (0.6 mL, 40 mmol L⁻¹). The absorbance value of the reaction mixture was recorded at 230 nm. The percent of scavenging of H₂O₂ was calculated by the following equation

\[\% \text{ of scavenging} = \left(\frac{|A_{\text{control}} - A_{\text{sample}}|}{A_{\text{blank}}} \right) \times 100 \]

where \(A_{\text{control}} \) is the absorbance of the control reaction (containing all reagents and ascorbic acid), \(A_{\text{sample}} \) is the absorbance of the test compound (containing all reagents and test compound) and \(A_{\text{blank}} \) is the absorbance of the blank (containing only reagents). Tests were carried out in triplicate.

Conclusions

A variety of (1,4-phenylene)bis(arylmethanesulfonfonyl-pyrroles and pyrazoles) were prepared by the cycloaddition of 1,3-dipolar reagents, tosylmethyl isocyanide and diazomethane to 1,4-bis(E)-2-((arylmethanesulfonfonyl) vinyl)benzenes (5a-d). All the compounds were evaluated for antioxidant activity. Amongst the tested compounds 5d displayed excellent radical scavenging activity in all the three methods evaluated when compared with the standard ascorbic acid. On the other hand, 1,4-(bis(3-arylmethanesulfonfonyl)-1H-pyrazol-4-yl)benzenes (8a-d) exhibited comparatively higher antioxidant activity than 1,4-(bis(3-arylmethanesulfonfonyl)-1H-pyrrrol-4-yl)benzenes (6a-d). In general, it was observed that compounds having methoxy substituent on aromatic ring displayed greater antioxidant activity than the other substituents.

Supplementary Information

Supplementary data (NMR spectra) are available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgement

The author, PhD A. Padmaja is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi for
financial assistance under major research project. One of the authors, G. Lavanya is thankful to University Grants Commission (UGC), New Delhi for the sanction of UGC-BSR fellowship. The authors are also thankful to Prof C. H. Appa Rao, Department of Bio-Chemistry, S.V.University, Tirupati for providing necessary facilities to carry out the antioxidant activity.

References