The Temperature and Potential Dependencies of the Oxygen Electroreduction Rate

C.F. Zinola and A.M. Castro Luna*

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, Sucursal 4, Casilla de Correo 16 (1900) La Plata, Argentina

Received: April 5, 1994; October 1, 1994

A cinética da reação de eletroredução de oxigênio (RERO) sobre eletrodos facetados dos tipos (111) e (100) foi estudada em H2SO4 1,0 M no intervalo de 8-62 ºC. O coeficiente de Tafel na região de alta densidade de corrente sobre Pt facetada do tipo (111) aumenta com a temperatura aproximando-se da razão - 2,303 (2RT/F), enquanto que sobre Pt facetada do tipo (100) ele atinge um valor independente de temperatura igual a -0,165 V/decada. A análise da dependência da velocidade da RERO com a temperatura e o potencial está baseada tanto nos efeitos de compensação entre a entalpia eletroquímica e a entropia de ativação como na influência do potencial sobre a energia livre de adsorção para os intermediários da RERO.

The kinetics of the oxygen electroreduction reaction (OERR) at faceted (111)- and (100)-type Pt electrodes was studied in 1.0 M H2SO4 in the 8-62 ºC range. The Tafel slope in the high current density region on faceted (111)-type Pt increases with temperature, approaching the - 2.303 (2RT/F) ratio, whereas on faceted (100)-type Pt it reaches an independent temperature value equal to -0.165 V/decade. The analysis of the temperature and potential dependences of the OERR rate is based on both the compensation effects between the electrochemical enthalpy and entropy of activation and the potential influence on the free energy of adsorption for the OERR intermediates.

Keywords: oxygen, platinum, temperature, kinetic parameters

Introduction

The OERR stationary kinetics on smooth polycrystalline (pc) and faceted Pt electrodes exhibits a Tafel slope in the hcd region, (br)hcd, ranging from -0.120 to -0.165 V/decade, depending on the electrode topology and the surface coverage by OERR intermediates. For the OERR, Yeager and Appleby found no significant changes of (br)hcd with temperature in concentrated H3PO4 in the 25-250 ºC range. Conversely, Damjanovic et al. report values of (br)hcd increasing with temperature in HClO4 and H2SO4 down to 70 ºC.

This work addresses the kinetics of the OERR in 1.0 M H2SO4 at different temperatures on faceted Pt surfaces. New results offer the possibility of obtaining thermodynamic data related to the activated process involved in the OERR.

Experimental

Faceted (111) and (100)-type Pt disks (99.999% purity, 3 mm of diameter) were prepared by the repetitive square wave potential program technique, as described elsewhere. Electrochemical kinetic runs were made in aqueous O2-free and O2-saturated 1.0 M H2SO4 in the 8-62 ºC range. A reversible hydrogen electrode (RHE) connected to the rest of the cell through a capillary tip was employed. A conventional thermostated two compartment cell, with the reference electrode compartment maintained at 25.0 ºC, was used to perform the experiments at a constant potential (non-isothermal conditions). The kinetics of the OERR at different temperatures were followed by the rotating disk electrode (RDE) technique. Stationary polarization curves were obtained under potentiostatic conditions and displayed as Tafel plots after making the convective-diffusion contribution correction for a reaction order with respect to O2 equal to 1. The values of the stationary Pt surface coverage by O-containing adsorbates, θr, were measured from the charge density, q0, derived from the current transients recorded after applying a potential step from the preset potential down to 0.3 V, i.e. a potential value where the O-containing surface species are no longer
present. \(\psi_f \) was calculated from the \(q_0/2q_H \) ratio, \(q_H \) being the H-atom monolayer charge density on each faceted Pt surface\(^2\).

All potentials in the text are referred to the RHE scale.

Results

The characterization of the Pt electrode surfaces was made by cyclic voltammetry in 1.0 M H\(_2\)SO\(_4\) and SEM micrographs (Figs. 1 and 2, respectively). The SEM micrograph of faceted (111)-type Pt surfaces shows a random distribution of hexagonal Pt facets (Fig. 2a). Cyclic voltammetry of this Pt surface exhibits a large contribution of weakly bound H-atom adsorption sites in the hydrogen electrosorption region. The SEM micrograph of faceted (100)-type Pt is characterized by a large contribution of squared-pyramid shaped facets, as shown in Fig. 2b. In this case, the cyclic voltammetric profile run in the hydrogen electrosorption region shows a large contribution of strongly H-atom reactive sites.

The reaction order with respect to O\(_2\) was evaluated in a previous work\(^{11}\) by log \((I_D/I_K) \) vs. log \((1-I_D/I_L) \) plots in 1.0 M H\(_2\)SO\(_4\) at different electrode potentials in the hcd region, \(I_K \) being the true kinetic OERR current, and \(I_L \) the limiting current plateau. It was found that the reaction order was nearly 1, regardless of the type of faceted Pt surface. The number of electrons involved in the reaction was calculated from the Koutecky-Levich plots, resulting in 4 for the OERR at faceted (111)-type Pt and 3.8 at faceted (100)-type Pt\(^{11,12}\).

The presence of H\(_2\)O\(_2\) in the course of the OERR was measured by the rotating ring-disk technique described in a previous work\(^2\). In the case of H\(_2\)SO\(_4\) aqueous solutions the contribution of the peroxide pathway to the total kinetic current, when a parallel reaction mechanism is considered, gives negligible results (< 1 %) for faceted (111)-type Pt electrodes. For faceted (100)-type Pt the contribution of the peroxide path is slightly higher with respect to the former case\(^{11}\).

Figure 1. Cyclic voltammograms for \((\alpha) \), faceted (100)-type (II) and faceted (111)-type (III) Pt surfaces run at 0.1 V/s in 1.0 M H\(_2\)SO\(_4\) at 25 °C.

Figure 2. (a) SEM micrographs obtained for the faceted (111)-type Pt, scale 0.5 \(\mu \)m, and (b) for faceted (100)-type Pt, scale 1.3 \(\mu \)m.

Figure 3. Tafel lines for OERR in O\(_2\)-saturated 1.0 M H\(_2\)SO\(_4\) on (111)-type Pt and (100)-type Pt at different temperatures: (\(\square \)) 8 °C, (\(\blacklozenge \)) 20 °C, (\(\triangledown \)) 30 °C, (\(\bullet \)) 40 °C, (\(\circ \)) 62 °C.
Table 1. *OER* kinetic parameters for faceted (111)- and (100)-type Pt electrodes in O$_2$-saturated 1.0 M H$_2$SO$_4$ at 8, 20, 30, 40 and 62 °C.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>(bT)$_{hcd}$ (V/decate)</th>
<th>(j0)$_{hcd}$ (A cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(111) - type Pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>0.111 ± 0.003</td>
<td>(5.6 ± 0.2) 10^{-10}</td>
</tr>
<tr>
<td>20.0</td>
<td>0.117 ± 0.003</td>
<td>(2.0 ± 0.2) 10^{-9}</td>
</tr>
<tr>
<td>30.0</td>
<td>0.119 ± 0.002</td>
<td>(3.9 ± 0.2) 10^{-9}</td>
</tr>
<tr>
<td>40.0</td>
<td>0.124 ± 0.002</td>
<td>(7.5 ± 0.2) 10^{-9}</td>
</tr>
<tr>
<td>62.0</td>
<td>0.135 ± 0.004</td>
<td>(2.3 ± 0.2) 10^{-8}</td>
</tr>
<tr>
<td>(100) - type Pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>0.166 ± 0.004</td>
<td>(3.9 ± 0.2) 10^{-8}</td>
</tr>
<tr>
<td>20.0</td>
<td>0.165 ± 0.004</td>
<td>(4.3 ± 0.2) 10^{-8}</td>
</tr>
<tr>
<td>30.0</td>
<td>0.164 ± 0.004</td>
<td>(5.0 ± 0.2) 10^{-8}</td>
</tr>
<tr>
<td>40.0</td>
<td>0.163 ± 0.004</td>
<td>(5.7 ± 0.2) 10^{-8}</td>
</tr>
<tr>
<td>62.0</td>
<td>0.162 ± 0.004</td>
<td>(7.6 ± 0.2) 10^{-8}</td>
</tr>
</tbody>
</table>

Figure 4. Arrhenius plots for the *OER* in O$_2$-saturated 1.0 M H$_2$SO$_4$ on (111)-type Pt and (100)-type Pt for different E values: (a) 0.90 V, (x) 0.85 V, (V) 0.80 V, (v) 0.75 V, (Q) 0.70 V.

faces as a result of the Pt oxide formation. Values of (bT)$_{hcd}$ and (j0)$_{hcd}$, the exchange current density in the hcd region for faceted (111)-type and (100)-type Pt at different temperatures, are presented in Table 1.

Electrochemical Arrhenius curves, ln j vs. 1/T, in the hcd region at different potentials are shown in Fig. 4. The electrochemical enthalpy of activation was obtained from the slope of these lines, and the logarithm of the pre-exponential factor, which contains the electrochemical entropy of activation, was derived from the intersection of Arrhenius lines with (1/T) = 0. For faceted (111)-type Pt, the electrochemical enthalpy of activation increases with the potential whereas for faceted (100)-type Pt it becomes almost constant. The pre-exponential factor, (lnj)$_{1/T=0}$, also shows a different potential behavior for each type of faceted Pt electrode. For faceted (100)-type Pt, (lnj)$_{1/T=0}$ changes with potential, whereas this dependence becomes negligible for faceted (111)-type Pt.

Discussion

Let us consider the influence of the potential on the chemical activation free energy, ΔG^a, for the *OER*. It implies a change in the Fermi level of the electrons at the Pt surface, which is evidenced as a shift in ΔG^a through αFE, α being the electrochemical transfer coefficient for the forward reaction. Thus, the electrochemical free energy of activation, ΔG^a, can be written as follows:

$$\Delta G^a = \Delta G^a + \alpha FE$$ \hspace{1cm} (1)

Earlier works10, and references therein, have shown that the influence of the electrode potential on the reaction rate does not always correspond to a temperature independent α value. The potential influence on α can be better explained by a dual effect on both the electrochemical enthalpy and entropy of activation. Therefore, α is better expressed as $\alpha = \alpha_H + \alpha_S$, where α_H and α_S are the enthalpic and entropic contributions to α. Therefore, considering that $\Delta G^a = \Delta H - T \Delta S^a$,

$$\alpha_H = \frac{1}{F} \left(\frac{\partial \Delta H^a}{\partial E} \right)_T, \hspace{1cm} \alpha_S = \frac{1}{F} \left(\frac{\partial \Delta S^a}{\partial E} \right)_T$$ \hspace{1cm} (2a, b)

As a consequence of the catalytic behavior of the *OER*, changes in the activation barriers due to adsorption should be considered. The influence of the adsorption of species in a chemical reaction was first considered by Brönsted13, extended to electrochemical systems by Horiiuti and Polanyi14 and re-examined by Appleby15.

For an electrocatalytic reaction such as the *OER*, the value of the activation barrier is modified by the presence of intermediate adsorbates. The effective electrochemical free energy of activation, ΔG^a_{eff}, is lower than ΔG^a (without adsorption), and is determined by considering the stabilization of the rds product through ΔG_{ad} that is, it is due to a
decrease in the ground-state energy of the OERR products in the reactant. The contribution of product adsorption to the activation barrier is reflected in the OERR current density expression by an exponential term of $\gamma \Delta G_{ad}$. γ is a geometrical factor arising from linearized Morse plots, which considers the variation in the jump distance for the electron transfer to the particles as a consequence of product adsorption.

Among the different proposed mechanisms for the OERR, an alternative two-step pathway consistent with our experimental results is suggested, as follows:

$$O_2 + Pt + H^+ + e^{-} \rightarrow [(O_2 H)Pt]_{ad}$$

$$[(O_2 H)Pt]_{ad} + H^+ + e^{-} \Rightarrow \text{products}$$

(1)

(II)

As such, the overall rate of the OERR in the hcd region can be expressed in terms of the current density of step (I), j_i:

$$j_i = \kappa F(kT/h)c_{H^+} kP_{O_2}(1 - \theta_T) \exp(-\Delta \bar{G}^d/RT) \exp(\gamma \Delta G_{ad} / RT)$$

where κ is the nuclear transmission coefficient for reactants, k is the Henry constant for O_2, c_{H^+} is the H^+ ion concentration in the bulk of the solution, and P_{O_2} is the O_2 saturation pressure.

Since the adsorption process changes $\Delta \bar{G}^d$ through $\Delta \bar{G}_{ad}$, the knowledge of θ_T as a function of the potential is required for each faceted Pt surface. On both Pt surfaces, θ_T linearly depends on the potential as follows:

$$\theta_T = \theta_{E = 0} + KE$$

(4)

where $K = (\partial \theta_T / \partial E)$ at a constant temperature, and $\theta_{E = 0}$ is the hypothetical fractional Pt surface coverage by O-intermediates obtained at $E = 0$ V. K is a parameter that depends on the Pt electrode surface, resulting in 0.85 V$^{-1}$ and 4.25 V$^{-1}$ for faceted (111)-type and (100)-type Pt, respectively.2

Experimental data for θ_T fits a Temkin isotherm, leading to a potential dependence of $\Delta \bar{G}_{ad}$:

$$\Delta \bar{G}_{ad} = \Delta G_{ad, \theta_{E = 0}} + r \theta_{E = 0} + rKE$$

(5)

where $r = (\partial \Delta G_{ad} / \partial \theta_T)$ at a constant temperature, and $\Delta G_{ad, \theta_{E = 0}}$ is the free energy of adsorption at zero surface coverage. Since $\Delta G_{ad, \theta_{E = 0}}$ includes the work function of metal, ϕ_{Pt}, and it depends on the crystallography of the electrode, a crystal orientation dependence for $\Delta G_{ad, \theta_{E = 0}}$ arises from the adsorption of intermediates. For Pt single crystals ϕ_{Pt} is 6.22 eV on Pt(111) and 5.80 eV on Pt$(100)^6$, resulting in larger values of $\Delta G_{ad, \theta_{E = 0}}$ for the OERR intermediates on Pt(100).

Taking into account Eq. 5, the OERR current density, is given by:

$$j_i = \kappa F(kT/h)c_{H^+} kP_{O_2}(1 - \theta_T) \exp(-\Delta \bar{G}^d/RT) \exp(\gamma \Delta G_{ad, \theta_{E = 0}} + r \theta_{E = 0} + \gamma rKE)/RT$$

(6)

On the other hand, considering the enthalpic and entropic components of $\Delta \bar{G}^d$ through Eqs. 2a, b, and neglecting the potential dependence of the pre-exponential term, a simplified OERR current density results:

$$j_i = \kappa \exp(-\alpha_{FE}/RT) \exp(\alpha_{FE}/R) \exp(\gamma rKE/RT)$$

(7)

From Eq. 7, the expression for $(br)_{hcd}$ is:

$$(br)_{hcd} = -\frac{2.303 RT}{[\alpha_{H} - \gamma \Delta H_{ad, \theta_{E = 0}} - \gamma r \theta_{E = 0} + (-\gamma rK + \alpha_{FE}) E]}$$

(8)

In order to evaluate the temperature dependence of $(br)_{hcd}$, Arrhenius plots were treated to calculate the potential dependences of both the effective electrochemical enthalpy and entropy of activation ΔH_{eff}^d and ΔS_{eff}^d.

Since, the theoretical expression for ΔH_{eff}^d is:

$$\Delta H_{eff}^d = \Delta H^d - \gamma \Delta H_{ad, \theta_{E = 0}} - \gamma r \theta_{E = 0} + (-\gamma rK + \alpha_{FE}) E$$

(9)

and for faceted (100)-type Pt, the potential coefficient of ΔH_{eff}^d, $(\partial \Delta H_{eff}^d / \partial E)$, is -5.1 KJ mol$^{-1}$ V$^{-1}$, therefore: $[\alpha_{H} - \gamma K/F] = -0.052$.

On the other hand, the expression for ΔS_{eff}^d, obtained from the Arrhenius pre-exponential factor, is:

$$\Delta S_{eff}^d = \Delta S^d + \gamma \Delta S_{ad, \theta_{E = 0}} + \alpha_{FE}^d$$

(10)

As such, considering the potential dependence of $(lnj)/E$ for faceted (100)-type Pt, $\alpha_{FE} = 1.2 \times 10^{-3}$ K$^{-1}$. For instance, at 303 K, $\alpha_{FE} = 0.37$, so that the entropic contribution to α is greater than $(\alpha_{H} - \gamma K/F)$. The simplified expression for $(br)_{hcd}$ is thereby independent of temperature, and given by the following equation:

$$(br)_{hcd} = -\frac{2.303 RT}{\alpha_{FE}}$$

(11)

Hence, for the OERR on faceted (100)-type Pt, the Tafel slope for the hcd lead to a temperature independent value of -0.163 V/decade, in agreement with the experimental data at all temperatures (Table 1).

For faceted (111)-type Pt, θ_T values are lower than 0.2 in the hcd region, so ΔG_{ad} can be considered almost constant and equal to $\Delta G_{ad, \theta_{E = 0}}$. Accordingly, the potential contribution of ΔG_{ad} to the overall current density becomes negligible, that is a langmuirian behavior. In this case, the potential dependence of ΔH_{eff}^d yields a slope equal to α_{H}. Taking into account that the experimental potential coefficient of ΔH_{eff}^d is 50 KJ mol$^{-1}$ V$^{-1}$, $\alpha_{H} = 0.5$ is obtained. In addition, $(lnj)/E$ is independent of potential, so it will lead to negligible α_S values. From the
data of Fig. 4, the slope of the (lnj)_T=0 vs E plot results in
\[\alpha_S \approx 10^{-6} \text{ K}^{-1} \]

Since \(\alpha_H = 0.5 \) and \(\alpha_S \approx 10^{-6} \text{ K}^{-1} \), the current density for the OERR on faceted (111)-type Pt results in the following expression for \((\mathbf{b}T)_{\text{had}} \):

\[(\mathbf{b}T)_{\text{had}} = -2.303 \frac{RT}{\alpha_H F} \tag{12} \]

Equation 12 shows that \((\mathbf{b}T)_{\text{had}} \) becomes temperature dependent, for instance, at \(T = 298 \text{ K} \), \((\mathbf{b}T)_{\text{had}} = 0.118 \text{ V/decade} \). This behavior agrees with the simplified classical electrode kinetics found on this type of Pt electrode.

Conclusions

1) A reaction scheme was proposed to interpret kinetic data of the OERR temperature dependence on faceted Pt electrodes in acid solution with a rds involving adsorbed species, which are responsible for the decrease in the activation barrier.

2) A Temkin adsorption isotherm was considered for the OERR adsorbed intermediates at faceted (100)-type Pt. Greater \(\mathbf{\Gamma} \) and \((\partial \mathbf{\Gamma} / \partial E) \) values caused a large potential dependence of \(\Delta G_{\mathbf{\text{ad}}} \) at this surface.

3) The influence of the potential on \(\Delta H^* \) and \(\Delta S^* \), which leads to the expression \(\alpha = \alpha_H + \alpha_S T \), was considered. \(\alpha_S \) is the major factor responsible for the temperature independence of \((\mathbf{b}T)_{\text{had}} \) on faceted (100)-type Pt, whereas for faceted (111)-type Pt, as \(\alpha_S \) has a negligible value, a temperature dependent \((\mathbf{b}T)_{\text{had}} \) results.

Acknowledgments

This work was financially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina. C.F.Z. thanks the Universidad de la República, Montevideo (Uruguay), for a fellowship. A.M.C.L. is a member of the Research Career of the Comisión de Investigaciones de la Provincia de Buenos Aires (CIC).

References