Electrometric Investigations on the Acid-Orthothioantimonite
System and the Formation of Heavy Metal Thioantimonites

Shiva Prasad

Departamento de Engenharia Química, Centro de Ciências e Tecnologia,
Universidade Federal da Paraíba, Campina Grande - PB, Brazil

Received: April 30, 1994; August 4, 1994

A estequiometria dos ânions formados durante a reação entre ácidos (HCl, CH₃COOH) e orto-thioantimonite de sódio foi investigado por meio de técnicas elektrométricas envolvendo as titulações de pH e condutometrías, bem como pelo método de Job de variação contínua. Os degraus e inflexões nas curvas de titulação e os máximos das curvas de variação contínua fornecem evidências incontestáveis da existência de três diferentes espécies aniónicas, a saber, SbS₃⁻, Sb₂S₅⁻ e Sb₂S₅⁻ na faixas de pH (>11.5), (8.7-9.1) e (6.6-7.1), respectivamente. Foi observado que uma adição em excesso dos ácidos os ânions thioantimonitos finalmente são convertidos em trisulfeto de antimônio. As titulações de pH e condutometrías entre Th⁴⁺ e os ânions thioantimonitos (SbS₃⁻, Sb₂S₅⁻ e Sb₂S₅⁻) indicam a formação de orto-ThS₃₂Sb₂S₃ e pyro-ThS₂Sb₂S₃ thioantimonitos de tório nas vizinhanças de pH 6.1 e 5.2, respectivamente.

The stoichiometry of the anions formed during the reaction between acids (HCl, CH₃COOH) and sodium ortho-thioantimonite was investigated by means of electrometric techniques involving pH and conductometric titrations, as well as by Job's method of continuous variation. The breaks and inflections in the titration curves and maxima from the continuous variation study provide definite evidence for the existence of three different anionic species, viz. SbS₃⁻, Sb₂S₅⁻ and Sb₂S₅⁻ in the pH ranges (>11.5), (8.7-9.1) and (6.6-7.1), respectively. Upon the addition of an excess of the acids the thioantimonite anions ultimately convert into antimony trisulfide. The pH and conductometric titrations between Th⁴⁺ and the thioantimonite anions (SbS₃⁻, Sb₂S₅⁻ and Sb₂S₅⁻) indicated the formation of thorium ortho-ThS₃₂Sb₂S₃ and pyro-ThS₂Sb₂S₃ thioantimonite in the vicinity of pH 6.1 and 5.2 respectively. Analytical investigations confirmed the results obtained by the electrometric study.

Keywords: thioantimonite, thorium thioantimonites, electrometric study

Introduction

Antimony is not used in industry in the unalloyed state to any extent. Its main use in the metallic state is as a constituent of many alloys, to which it imparts certain desired properties, such as expansion on solidification, increased hardness, and corrosion resistance. The electrodeposition of antimony alloys employ antimonites and thioantimonites in alkaline media. The electrodeposits of antimony alloys are generally brittle and stressed and do not adhere well to the base metal. So far, the baths developed have very few practical applications. The properties of antimony and its low cost could make electrodeposited antimony very useful if a really satisfactory plating bath were developed.

The problem in the electrodeposition bath seems to be due to the complicated aqueous solution chemistry of antimony. The anionic species of antimony change with the pH of the bath. It has been reported that investigations on antimony are made difficult by the fact that it sometimes appears as Sb(III) and Sb(V) in the same compound. The antimony compounds are formally similar, but because of the tendency of antimony to form five or six bonds, the species in aqueous solution of similar arsenic and antimony compounds may be different.

With the intention of studying in detail the chemistry of the decomposition of alkaline ortho-thioantimonite upon acidification, establishing the stoichiometry of intermediate species, and examining the suitable conditions for their stability and existence it was considered worthwhile to make a careful and precise study of the acid-thioantimonite
system by electrometric techniques, which have provided
more conclusive evidence of the condensation processes of
thioamions of tungsten, molybdenum and arsenic. The
thioamions formed are also treated with heavy metal ions
such as Zn, Ni and Th to investigate the existence of
their different thioantimonite anions.

Experimental

Merck's guaranteed extra-pure reagents, SbCl₅,
Na₅S·9H₂O, CH₃COOH, Th(NO₃)₄·5H₂O and hydrochloric
acid were used and the solutions were prepared with
fresh distilled water. The sodium ortho-thioantimonite so-
lution was prepared by carefully digesting one mole of a
synthesized sample of Sb₂S₃ with three moles of Na₅S. The
concentration of the stock solution was further checked by
determining antimony as sulfide and sulfur by the wet
process.

The pH and conductometric measurements were car-
ried out in the usual manner. Using different concentra-
tions of the reactants, a series of glass electrode and con-
ductometric titrations was performed. The observed pH
changes were plotted as a function of the volume of the
titrant added. The inflections obtained by the curves were
confirmed by the pronounced maxima in dpH/dV and zero
in dpH/dV² graphs. The end-points in conductometric
titrations were located graphically. The electrometric titra-
tion results from the formation of thioantimonite anions and
thorium thioantimonites are summarized in Tables 1 and 2,
respectively. Job's method of continuous variation using
electrical conductance measurements was also employed
for determining the stoichiometry of thioantimonite anions
formed by the interaction of acids (HCl and CH₃COOH)
and ortho-thioantimonite. The difference in specific con-
ductivities (the sum of the conductivity of constituent so-
lutions minus the observed specific conductivity of the
mixtures) were plotted against the composition of the mix-
tures. From the maxima obtained in such plots, the stoichiometry of the compound formed was established.

<table>
<thead>
<tr>
<th>Table 1. Summary of the results of the electrometric titrations. Volume of sodium ortho-thioantimonite taken in the cell = 25mL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molarity of solutions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HCl</td>
</tr>
<tr>
<td>M/2</td>
</tr>
<tr>
<td>M/5</td>
</tr>
<tr>
<td>M/10</td>
</tr>
<tr>
<td>M/20</td>
</tr>
</tbody>
</table>

*A and B represent the end-points observed from pH and conductometric titrations, respectively.

<table>
<thead>
<tr>
<th>Table 2. Summary of results of electrometric titrations. Volume of titrate solution taken in the cell = 25 mL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molarity of Solutions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Calc.</td>
</tr>
<tr>
<td>Th(NO₃)₄</td>
</tr>
<tr>
<td>M/10</td>
</tr>
<tr>
<td>M/20</td>
</tr>
<tr>
<td>M/40</td>
</tr>
<tr>
<td>Reverse titrations, Fig.3, curves 3 and 4</td>
</tr>
<tr>
<td>M/350</td>
</tr>
<tr>
<td>M/600</td>
</tr>
<tr>
<td>M/1000</td>
</tr>
<tr>
<td>Th(NO₃)₄</td>
</tr>
<tr>
<td>M/10</td>
</tr>
<tr>
<td>M/20</td>
</tr>
<tr>
<td>M/40</td>
</tr>
</tbody>
</table>
The precipitates obtained at the end-points of the titrations between thorium nitrate and sodium thioantimonites were also analyzed to substantiate the electrometric results. The different thorium thioantimonites were prepared by mixing stoichiometric amounts of thorium nitrate solution with the respective sodium thioantimonite solutions. The precipitates obtained were washed several times with aqueous 10% (v/v) ethanolic solution and dried in a vacuum desiccator for 40 h. A known amount (2 g) of each of the above was digested with concentrated HNO₃ (15 mL) to dryness in a steam bath. The treatment was repeated two times. The residue was dissolved in a minimum quantity of hydrochloric acid and then analyzed quantitatively for antimony³⁺ and thorium⁹⁺. From the proportions of thorium, antimony and sulfur in the compounds thus obtained, their compositions were established. The results are summarized in Table 3.

Results and Discussion

Thioantimonite anions

A perusal of the pH titration curves (Fig. 1A) indicated that the addition of one mole of acid (HCl and CH₃COOH) per mole of Na₃SbS₃ yields a pronounced inflection in the region of pH 8.7-9.1, corresponding to the formation of the pyrothio anion Sb₂S₅⁺. Further addition of the acids yields one more inflection, showing the consumption of three

<table>
<thead>
<tr>
<th>Proposed formula of the compound</th>
<th>Mode of synthesis</th>
<th>Analysis %: Found (Calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Th</td>
</tr>
<tr>
<td>Analysis of the ortho-thioantimonite precipitates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ThS₂S₂S₃</td>
<td>Direct*</td>
<td>44.36 (44.40)</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>44.43</td>
</tr>
<tr>
<td>Analysis of the pyro-thioantimonite precipitates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThS₄SbS₃</td>
<td>Direct</td>
<td>36.53 (36.49)</td>
</tr>
</tbody>
</table>

*Direct - Thorium nitrate solution added to sodium ortho-thioantimonite solution. Reverse - sodium ortho-thioantimonite solution added to thorium nitrate solution.

![Figure 1](image-url)
Figure 1. (A) pH and (B) conductometric titrations.
moles of H^+ per mole of SbS_3^{3-}, corresponding to the precipitation of Sb_2S_3 in the pH range of 4.0-5.0. The pH value of such acidified solutions became steady only after a lapse of some time indicating that the reaction proceeds by way of some unstable intermediate species. It was noted that the reaction was faster in case the of strong acid (HCl).

Conductometric titrations between the acids (HCl, CH_3COOH) and Na$_3$SbS$_3$ were also carried out using similar concentrations of the reagents for the sake of comparing results. The observed breaks (Fig. 1B) confirm the formation of $Sb_2S_3^{4+}$ and Sb_2S_3, as indicated by the studies, and in addition, gave one more break at the ratio $H^+:SbS_3^{3-}$ as 1:2 suggesting the formation of the meta-thioantimonite anion, SbS_2^{2-}, in the range of pH 6.6-7.1. A similar meta-anion of As(III) was not evidenced by this study.

Job’s method of continuous variation gave one sharp maxima (Fig. 2) at a molar ratio of $H^+:SbS_3^{3-}$ as 2:1, confirming the formation of meta-thioantimonite. The step-by-step degradation of ortho-thioantimonate upon acidification can be shown as follows:

$$2SbS_3^{3-} + 2H^+ = Sb_2S_3^{4+} + H_2S$$
$$SbS_3^{4+} + 2H^+ = 2SbS_3^{2-} + H_2S$$
$$2SbS_2^{2-} + 2H^+ = Sb_2S_3 + H_2S$$

The results of the electrometric experiments on the acid orthoantimonite system suggest the formation of alkali pyro- and meta-thioantimonite before the final decomposition into Sb_2S_3 at pH ranges of 8.7-9.1 and 6.6-7.1, respectively. Gravimetric investigations were performed on the orange precipitate obtained, which confirmed the composition to be Sb_2S_3.

Thorium thioantimonites

The solution of sodium ortho-thioantimonite (pH 11.5) was prepared by digesting an analyzed sample of antimony trisulfide in a sodium sulfide solution of the required strength.

$$3Na_2S + Sb_2S_3 = 2Na_3SbS_3$$

Sodium pyro-thioantimonite (pH 8.9) and meta-thioantimonite (pH 6.8), as suggested by the above studies, were prepared by progressive additions of hydrochloric acid to sodium ortho-thioantimonate solutions in the molar ratios of 1:1 and 1:2, respectively.

$$2HCl + 2Na_3SbS_3 = Na_4Sb_2S_3 + H_2S$$
$$2HCl + Na_4Sb_2S_3 = NaSbS_2 + H_2S$$

Figure 3 illustrates the curves of pH and conductometric titrations performed between the solutions of sodium ortho-thioantimonite and thorium nitrate. In direct titrations (curve 1), when Th(NO$_3$)$_4$ (pH 3.4) solution was added to the ortho-thioantimonite solution (pH 11.5) a sharp fall in pH was noted with an inflection at the molar ratio of $Th^{4+}:SbS_3^{3-}$ as 3:4 in the vicinity of pH 6.1, corresponding to the stoichiometry for the formation of thorium.

![Figure 3. Ortho-thioantimonite titrations. Curves (1) and (2) : M/20 Th(NO$_3$)$_4$ added to 25 mL of M/200 Na$_3$SbS$_3$. Curves (3) and (4): M/20 Na$_3$SbS$_3$ added to 25 mL of M/350 Th(NO$_3$)$_4$.](image-url)
ortho-thioantimonite, $3\text{ThS}_2.2\text{Sb}_2\text{S}_3$. In reverse titrations (curve 3) when Na_3SbS_3 solution was added to the thorium nitrate solution, the pH first increased very slowly, but at the end-point it jumped corresponding to the formation of the same compound in accordance with the following equation:

$$3\text{Th(NO}_3)_4 + 4\text{Na}_3\text{SbS}_3 = (3\text{ThS}_2.2\text{Sb}_2\text{S}_3) + 12\text{NaNO}_3$$

Employing similar concentrations of the reactants, both direct (curve 2) and reverse (curve 4) conductometric titrations between thorium nitrate and sodium ortho-thioantimonite gave well-defined breaks at a 3:4 molar ratio of $\text{Th}^{4+}:\text{SbS}_3^{3-}$, confirming the formation of thorium ortho-thioantimonite.

An interesting phenomenon was observed in both the pH and conductometric direct titrations, when thorium nitrate was used as titrant. The pH and conductance value took a longer time to stabilize in the region of the molar ratio of $\text{Th}^{4+}:\text{SbS}_3^{3-}$ as 1:2, which may be ascribed to the formation of an intermediate species $\text{ThS}_2.3\text{NaSb}_2\text{S}_3$ before precipitation of the final stable product $3\text{ThS}_2.2\text{Sb}_2\text{S}_3$. Sb(V) has been reported to form such an intermediate compound with thorium.

Figure 4 illustrates the changes occurring in the pH and conductance values when $\text{Th(NO}_3)_4$ solution is added to sodium pyro-thioantimonite solution. The titration curves provide well-defined inflections and breaks at the point where the molar ratio of $\text{Th}^{4+}:\text{SbS}_3^{4+}$ is 1:1, which corresponds to the stoichiometry for the formation of $\text{ThS}_2.2\text{Sb}_2\text{S}_3$ in the neighborhood of pH 5.2 (Table 1). The reaction can be represented by the following equation:

$$\text{Th(NO}_3)_4 + \text{Na}_3\text{SbS}_3 = \text{ThS}_2.2\text{Sb}_2\text{S}_3 + 4\text{NaNO}_3$$

Investigations on the reaction of thorium nitrate with sodium meta-thioantimonite failed to give any dependable results. This may be ascribed to the soluble nature of the product, the small difference in the pH values of the reactants, and presence of sodium chloride in appreciable amounts, preventing the occurrence of breaks in the titration curves.

The results of the quantitative elemental analysis of the precipitates by classical methods were used to calculate the proportions of the elements present in the compounds. From these proportions, the composition of the compounds were established which were found to be the same as those obtained by the conductometric techniques (see Table 3).

Similar investigations on the formation of thioantimonites of zinc and nickel confirmed the formation of $3\text{ZnS}_2.\text{Sb}_2\text{S}_3$ (pH 7.3) and $2\text{ZnS}_2.\text{Sb}_2\text{S}_3$ (pH 5.2), and $3\text{NiS}_2.\text{Sb}_2\text{S}_3$ (pH 8.9) and $2\text{NiS}_2.\text{Sb}_2\text{S}_3$ (pH 7.8), respectively.

Conclusions

The results of the electrometric study suggest the formation of SbS_5^{4+} and SbS_2^{2-} in the pH ranges of 8.7-9.1 and 6.6-7.1, respectively, before the final decomposition of SbS_3^{3-} into Sb_3^{11}. The electrometric and analytical investigations indicate the formation of ortho-$3\text{ThS}_2.2\text{Sb}_2\text{S}_3$ and pyro-$\text{ThS}_2.\text{Sb}_2\text{S}_3$ thioantimonites in the neighborhood of pH 6.1 and 5.2, respectively.

Acknowledgments

The author wishes to express his sincere thanks to the CNPq, Brasilia, for the financial assistance for this work.

References

![Figure 4. Pyro-thioantimonite titrations. M/20 Th(NO3)4 added to 25 mL. of M/250 Na3SbS3.](image-url)