Observations on an Iodocarbonate Route to Certain 1,3-Diols Related to the C22-34 Subunit of FK-506

James A. Marshall and Shiping Xie

Department of Chemistry, McCormick Road, University of Virginia, Charlottesville, VA 22901

Received: March 11, 1996

A iodolactonização do carbonato alílico 2.8, obtido pela adição da alenilestannana 2.4 ao enal 2.3, promovida por BF3, produziu o iodocarbonato 2.9 com inversão do estereocentro alílico. O estereoisômero esperado 2.11 foi formado em menor proporção. Essa inversão deve ter ocorrido através de um caminho dissociativo envolvendo o carbocatión alílico 5.2.

Iodolactonization of the allylic carbonate 2.8, secured through BF3-promoted addition of allenylstannane 2.4 to enal 2.3, afforded iodocarbonate 2.9 with inversion of the allylic stereocenter. The expected stereoisomer 2.11 was formed as a minor product. The inversion is thought to proceed by a dissociative pathway involving the allylic carbocation 5.2.

Keywords: iodolactonization, allylic carbonate, cyclic carbonate

Introduction

We recently described an efficient route to the C22-34 subunit 1.7 of the immunosuppressant FK-506 (1.8). A key feature of this synthesis was the homologation of enal 1.1 with the enantioenriched allenic stannane 1.2 to yield the syn adduct 1.3. Elaboration of this adduct was effected through reduction of the PMB derivative 1.4 to allylic alcohol 1.5 which could be epoxidized efficiently by Sharpless methodology. Subsequent reduction of epoxide 1.6 with DIBAL-H and oxidation afforded the dioxolane 1.7, an intermediate in Danishefsky’s synthesis of FK-506.

In some related exploratory studies on alternative methodology for the conversion of homopropargylic alcohols, such as 1.3, to 1,3-diols, we examined an iodocarbonate route. Although, for reasons that will become apparent, the sequence was not applicable to the FK-506 project, our findings provide some useful insights on potential applications of this methodology to similar intermediates.

The model system employed in these studies was the racemic aldehyde 2.3, prepared by Peterson olefination of cyclohexanecarboxaldehyde with the imine 2.2 and subsequent hydrolysis. Addition of the racemic allenylstannane 2.4, in the presence of BF3•OEt2 afforded an 80:20 mixture of separable syn and anti adducts 2.5 and 2.6. Hydrogenation of the former over Lindlar’s catalyst gave...
the (Z)-allylic alcohol 2.7 which, without purification, was converted to the t-butyloxyl carbonate 2.8. Upon treatment with IBr in CH₂Cl₂ 2.8 gave rise to a 70:30 mixture of isomeric iodo carbonates 2.9 and 2.11.

To our surprise the major iodo carbonate 2.9 displayed a doublet for the allylic carbonyl proton H₆ at 4.41 ppm with a coupling constant, J = 10.7 Hz, indicative of an anti (dixial) relationship with H₈. In the minor iodo carbonate this proton appeared at 4.76 ppm with J = 5.2 Hz. It can therefore be surmised that either a) our assignments of stereochemistry to alcohols 2.5 and 2.6 should be reversed or b) epimerization of the allylic carbonyl center has occurred en route to carbonates 2.9 and 2.11.

As further proof for the structures of these iodo carbonates we effected their hydrogenolysis to 2.10 and 2.12 which were saponified to diols 3.1 and 3.2. The ¹³C-NMR spectra of the derived acetonides 3.3 and 3.4 were in accord with the assignedstructures as anti,anti and syn,anti.

To confirm the stereochemical assignments of alcohols 2.5 and 2.6, the addition of allene stannane 2.4 to enal 2.3 was effected in the presence of InCl₃, conditions previously shown to favor anti adducts. This led to a 90:10 mixture of the alcohols produced in the BF₃ reaction, but now favoring 2.6. Following the previous sequence, we prepared the (Z)-allylic carbonate 4.2. Upon treatment with IBr, carbonate 4.2 afforded a 90:10 mixture of iodo carbonates 2.9 and, presumably, 4.3.

It can therefore be surmised that iodolactonization of the syn carbonate 2.8 proceeds with predominant inversion of the allylic carbonyl center. A plausible sequence of events is outlined in eq 5. Accordingly, attack of the carbonyl oxygen on the iodonium species derived from 2.8 would afford the intermediate o xo cation 5.1. Loss of isobutylene would yield iodo carbonate 2.11, one of the expected products. However, a second low energy pathway could transform the strained o xo cation 5.1 to the
allylic cation 5.2. This could then cyclize to the unstrained oxo cation 5.3 en route to the major product 2.9.

It should be noted that the syn,syn cyclic carbonate 6.4 was not observed as a significant cyclization product of the syn carbonate 2.8. Tirando and Prieto reported analogous findings for iodocarboxylation of a related syn, (Z)-homoaallylic alcohol with CO₂, I₂ and BuLi.⁹ It is presumed that steric interactions in the transition state 6.1 disfavor this mode of cyclization. The syn,syn carbonate (diastereomeric with 6.4 at the iodo center) would expectedly be favored if the above sequence were effected on the (E)-isomer of carbonate 2.8. However, this option was not pursued because a more satisfactory route to the syn,syn dioxolane 1.2 was developed as outlined in Eq. 1².

The present findings reveal potential pitfalls in the use of the iodocarbonate sequence for introduction of oxygen stereocenters to homoallylic alcohols. In the present case, the complications stem from a combination of unfavorable steric interactions and a low energy dissociation pathway for the oxacarbon intermediate 5.1.

Experimental¹⁰

(E)-3-Cyclohexyl-2-methyl-2-propenal (2.3)

To a solution of 7.38 g (32.5 mmol) of the N-t-butylimine of 2-(triethylsilyl)propanal in 80 mL of THF was added 13.0 mL (32.5 mmol) of 2.5 M n-BuLi (in hexanes) dropwise at -78 °C. The reaction mixture was gradually warmed to -40 °C over 1.5 h and then recooled to -78 °C. To the yellow solution was added 2.80 g (25.0 mmol) of cyclohexanecarboxaldehyde dropwise. After being gradually warmed to -40 °C over 1.5 h, the mixture was treated with 6.73 mL (87.4 mmol) of trifluoroacetic acid, then warmed to 0 °C and stirred for 1 h, followed by addition of 14 mL of water. After being stirred at 0 °C for an additional 12 h (overnight), the mixture was diluted with water and extracted three times with Et₂O. The combined organic extracts were successively washed with saturated NaHCO₃ and brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The brown residue was chromatographed on silica gel (10% Et₂O-hexanes) to yield 3.53 g (93%) of aldehyde 2.3 as a yellow liquid: ¹H-NMR (400 MHz) δ 1.12-1.37 (m, 6 H), 1.66-1.77 (m, 4 H), 1.73 (d, J = 1.3 Hz, 3 H), 2.47 (m, 1 H), 6.28 (d, J = 9.5 Hz, 1 H), 9.35 (s, 1 H).

(±)-(E, 3S, 4R)- and (E, 3R, 4R)-7-Benzoloxy-1-cyclohexyl-2,4-dimethyl-1-hepten-5-yn-3-ol (2.5 and 2.6)

A solution of 537 mg (2.88 mmol) of InCl₃ in 5 mL of acetone was cooled to 0 °C, followed by addition of 438 mg (2.88 mmol) of aldehyde 2.3 in 0.5 mL of acetone. The solution was cooled to -40 °C; then 1.60 g (3.45 mmol) of stannane 2.4 was added in 1 mL of acetone. After being warmed to -30 °C, the mixture was stirred for 20 h, and then quenched with water. Acetone was mostly removed under reduced pressure and the resultant residue was diluted with water and extracted with ether. The combined organic extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure to yield a yellow residue, which was chromatographed on silica gel (30% Et₂O-hexanes) to provide 701 mg (76%) of more polar anti product 2.6 and 150 mg (16%) of a 1:1 mixture of 2.5 and 2.6 (syn:anti). This brought the total syn/anti ratio to 9:91.

2.5 (syn) IR (film) 3444, 2230 cm⁻¹; ¹H-NMR δ 0.89-1.31 (m, 6 H), 1.17 (d, J = 6.9 Hz, 3 H), 1.56-1.71 (m, 4 H), 1.64 (d, J = 1.3 Hz, 3 H), 1.70 (d, J = 4.6 Hz, 1 H), 2.17 (m, 1 H), 2.69 (m, 1 H), 3.91 (dd, J = 6.8, 3.4 Hz, 1 H), 4.13 (d, J = 2.0 Hz, 2 H), 4.55 (s, 2 H), 5.30 (d, J = 9.2 Hz, 1 H), 7.27-7.34 (m, 5 H); ¹³C-NMR δ 137.6, 134.3, 132.6, 128.4, 128.0, 127.8, 88.8, 80.0, 77.8, 71.3, 57.6, 36.6, 33.0, 30.8, 26.1, 25.9, 16.3, 12.1.

2.6 (anti) ¹H-NMR δ 0.98-1.29 (m, 6 H), 1.06 (d, J = 7.0 Hz, 3 H), 1.59-1.72 (m, 4 H), 1.59 (d, J = 1.2 Hz, 3 H), 2.12 (d, J = 3.3 Hz, 1 H), 2.18 (m, 1 H), 2.68 (m, 1 H), 3.75 (dd, J = 8.1, 3.1 Hz, 1 H), 4.17 (d, J = 1.9 Hz, 2 H), 4.57 (s, 2 H), 5.24 (d, J = 9.0 Hz, 1 H), 7.28-7.35 (m, 5 H); ¹³C-NMR δ 137.5, 135.6, 131.8, 128.4, 128.1, 127.8, 88.4, 81.2, 78.4, 71.4, 57.6, 36.7, 33.0, 31.4, 26.1, 25.9, 17.6, 11.0.

Compounds 2.5 and 2.6 were also prepared by BF₃·Et₂O promoted addition of stannane 2.4 to aldehyde 2.3.² In that case, the syn product 2.5 was favored over the anti product 2.6 by 80:20.

(±)-(E, 5Z, 3S, 4R)-7-Benzoloxy-1-cyclohexyl-2,4-dimethyl-1,5-heptadien-3-ol (2.7)

A mixture of 200 mg (0.612 mmol) of alkylnyl alcohol 2.5 and 20 mg of Lindlar’s catalyst (10 wt% Pd) in 3 mL of benzene was stirred at rt under hydrogen (supplied and maintained from a balloon) for 5 h. The reaction mixture
was filtered through a short pad of Celite and washed with two portions of Et2O. The combined filtrate and washings were concentrated under reduced pressure to yield 201 mg (quantitative) of (Z)-olefin 2.7 which was used for the next step without further purification: 1H-NMR δ 0.99 (d, J = 6.7 Hz, 3 H), 1.10-1.31 (m, 6 H), 1.45-1.70 (m, 5 H), 1.51 (d, J = 1.2 Hz, 3 H), 2.09-2.18 (m, 1 H), 2.51-2.64 (m, 1 H), 3.72 (d, J = 7.5, 3.1 Hz), 4.03 (d, J = 6.6 Hz, 2 H), 4.50 (ABq, J_{AB} = 10.0 Hz, $\Delta\nu$ = 11.4 Hz, 2 H), 5.15 (d, J = 9.1 Hz, 1 H), 5.36 (t, J = 10.0 Hz, 1 H), 5.53 (dt, J = 10.0, 6.6 Hz, 1 H), 7.25-7.34 (m, 5 H).

(±)-(1E, 5Z, 3S, 4R)-7-Benzylxoxyl-1-cyclohexyl-2,4-dimethyl-1,5-heptadien-3-yl tert-Butyl Carbonate (2.8)

Two portions of dry hexane were used to wash 105 mg (0.913 mmol) of 35 wt% potassium hydride (oil dispersion). The washed potassium hydride was suspended in 0.6 mL of DMPU and 3 mL of THF at 0 °C, followed by addition of 201 mg (0.612 mmol) of alcohol 2.7. The mixture was stirred for 1 h and 199 mg (0.913 mmol) of di-t-butyl dicarbonate was added in one portion. After being stirred at 0 °C for 3 h, the mixture was poured into saturated NaHCO$_3$ and extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous MgSO$_4$ and concentrated under reduced pressure. The residue was chromatographed on silica gel. Elution with 10% EtOAc-hexane afforded 264 mg of t-butyl carbonate 2.8 as a colorless liquid (contaminated with a small amount of di-t-butyl dicarbonate): IR (film) 2980, 2924, 1739 cm$^{-1}$; 1H-NMR δ 0.97 (d, J = 6.7 Hz, 3 H), 1.00-1.30 (m, 6 H), 1.43 (s, 9 H), 1.45-1.70 (m, 4 H), 1.51 (s, 3 H), 2.05-2.18 (m, 1 H), 2.74-2.81 (m, 1 H), 4.01 (m, 2 H), 4.46 (ABq, J_{AB} = 8.2 Hz, $\Delta\nu$ = 5.7 Hz, 2 H), 4.60 (d, J = 8.5 Hz, 1 H), 5.20 (d, J = 9.2 Hz, 1 H), 5.30 (t, J = 10.1 Hz, 1 H), 5.55 (dt, J = 10.1, 6.3 Hz, 1 H), 7.25-7.34 (m, 5 H).

Cyclic Carbonates of (±)-(E, 3R, 4S, 5S, 6S)-7-Benzylxoxyl-1-cyclohexyl-2,4-dimethyl-6-ido-1-heptene-3,5-diol (2.9) and (±)-(E, 3S, 4S, 5S, 6S)-7-(Benzyloxy)-1-cyclohexyl-2,4-dimethyl-6-iodo-1-heptene-3,5-diol (2.11)

A. Iodolactonization of t-Butyl Carbonate 2.8

A solution of 264 mg (ca 0.612 mmol with di-t-butyl dicarbonate impurity) of t-butyl carbonate 2.8 in 6 mL of CH$_2$Cl$_2$ was cooled to -78 °C, followed by addition of 1.40 mL (1.40 mmol) of iodine monobromide (1 M in CH$_2$Cl$_2$). The reaction was complete in less than 30 min. The reaction mixture was poured into water and extracted with CH$_2$Cl$_2$. The combined organic extracts were successively washed with saturated Na$_2$SO$_4$ and brine, dried over anhydrous MgSO$_4$ and concentrated under reduced pressure. The residue was chromatographed on silica gel. Elution with 10% EtOAc-hexanes afforded 131 mg (43% from 2.7) of iodocarbonate 2.9 and 55.0 mg (18% from 2.7) of iodocarbonate 2.11, both as liquids.

2.9 IR (film) 2923, 2846, 1754 cm$^{-1}$; 1H-NMR δ 0.76 (d, J = 6.7 Hz, 3 H), 0.95-1.35 (m, 6 H), 1.58-1.70 (m, 5 H), 1.64 (d, J = 1.2 Hz, 3 H), 2.10-2.20 (m, 2 H), 3.72 (dd, J = 10.1, 1.0 Hz, 1 H), 3.85 (t, J = 9.8 Hz, 1 H), 4.00 (dd, J = 9.8, 5.6 Hz, 1 H), 4.26 (dd, J = 6.9, 3.5, 1.2 Hz, 1 H), 4.41 (d, J = 10.7 Hz, 1 H), 4.56 (ABq, J_{AB} = 11.8 Hz, $\Delta\nu$ = 22.7 Hz, 2 H), 5.30 (d, J = 10.2 Hz, 1 H), 7.29-7.38 (m, 5 H); 13C-NMR δ 148.9, 140.2, 140.1, 137.5, 128.6, 128.1, 127.9, 127.8, 127.4, 89.5, 79.3, 73.5, 71.8, 36.8, 35.1, 32.8, 32.4, 31.3, 25.9, 25.7, 11.5, 10.6.

2.11 IR (film) 2924, 2850, 1756 cm$^{-1}$; 1H-NMR δ 0.83 (d, J = 7.0 Hz, 3 H), 0.92-1.28 (m, 6 H), 1.45-1.75 (m, 5 H), 1.61 (d, J = 1.0 Hz, 3 H), 2.12-2.22 (m, 1 H), 2.35-2.43 (m, 1 H), 3.80-3.92 (m, 3 H), 4.19 (m, 1 H), 4.53 (ABq, J_{AB} = 11.7 Hz, $\Delta\nu$ = 23.0 Hz, 2 H), 4.76 (d, J = 5.2 Hz, 1 H), 5.25 (d, J = 9.2 Hz, 1 H), 7.24-7.35 (m, 5 H).

B. Iodolactonization of t-Butyl Carbonate 4.2

The above procedure was applied to 228 mg (ca. 0.383 mmol with di-t-butyl dicarbonate impurity) of t-butyl carbonate 4.2 and 0.77 mL of iodine monobromide (1 M in CH$_2$Cl$_2$) in 4 mL of CH$_2$Cl$_2$ at -78 °C for 15 min to yield a crude product as a brown liquid. The 1H-NMR spectrum showed two products in the ratio of 90:10 by integration. The crude product was chromatographed on silica gel (10% EtOAc-hexanes) to yield 133 mg (70% from 4.1) of iodocarbonate 2.9 and 15.2 mg (8% from 4.1) of the minor product. The spectral data (IR, 1H and 13C-NMR) of the major product were identical to those obtained from part A. However, the minor product consisted of a new compound, presumed to be 4.3, not seen in the 1H-NMR spectrum of the above minor product.

Cyclic Carbonate of (±)-(E, 3R, 4R, 5R)-7-Benzylxoxyl-1-cyclohexyl-2,4-dimethyl-1-heptene-3,5-diol (2.10)

To a solution of 70 mg (0.140 mmol) of iodocarbonate 2.9 in 2 mL of benzene was added 56 µL (0.21 mmol) of n-Bu$_3$SnH and 7 mg (0.042 mmol) of AIBN. The mixture was stirred at reflux for 6 h, cooled to rt and benzene was removed under reduced pressure. The residue was diluted with Et$_2$O, treated with saturated KF and stirred for 15 min. The resultant suspension (n-Bu$_3$Sn) was filtered and washed with two portions of Et$_2$O. The combined filtrate and washings were diluted with water and extracted with Et$_2$O. The combined organic extracts were washed with brine, dried over anhydrous MgSO$_4$ and concentrated under reduced pressure. The residue was chromatographed on silica gel. Elution with 50% EtOAc-hexanes afforded 41.9 mg (80%) of carbonate 2.10 as a liquid: IR (film) 2924, 2851, 1749 cm$^{-1}$; 1H-NMR δ 0.82 (d, J = 6.7 Hz, 3 H), 1.00-1.35 (m, 6 H), 1.50-1.90 (m, 6 H), 1.59 (d, J = 1.2 Hz, 3 H).
Cyclic Carbonate of (+)-(E, 3S, 4R, 5R)-7-Benzylxoyl-1-cyclohexyl-2,4-dimethyl-1-heptene-3,5-diol (3.12)

The dehalogenation procedure for carbonate 2.10 was applied to 27.0 mg (0.0541 mmol) of iodocarbonate 2.11, 22 μL (0.081 mmol) of n-BuSnH and 2.7 mg (0.016 mmol) of AIBN in 2 mL of benzene at reflux for 6 h to provide, after chromatography on silica gel (50% EtO-hexanes), 18.8 mg (93%) of carbonate 2.12 as a liquid: IR (film) 2924, 2850, 1750 cm⁻¹; H-NMR (400 MHz) δ 0.91 (d, J = 7.2 Hz, 3 H), 1.02-1.30 (m, 6 H), 1.5-2.0 (m, 4 H), 1.55 (d, J = 1.9 Hz, 3 H), 1.92-1.99 (m, 2 H), 2.03-2.24 (m, 2 H), 2.60-3.70 (m, 2 H), 4.43 (m, 1 H), 4.50 (ABq, JAB = 11.8 Hz, Δν = 16.4 Hz, 2 H), 4.77 (d, J = 3.2 Hz, 1 H), 5.27 (d, J = 9.1 Hz, 1 H), 7.24-7.35 (m, 5 H); 13C-NMR δ 149.0, 138.0, 134.4, 128.4, 127.8, 127.7, 126.3, 80.9, 80.7, 73.4, 65.8, 65.6, 36.8, 34.6, 32.8, 32.7, 32.3, 25.9, 15.3, 13.6, 11.8.

(+)-(E, 3S, 4R, 5R)-7-Benzylxoyl-1-cyclohexyl-2,4-dimethyl-1-heptene-3,5-diol (3.1)

A mixture of 40.0 mg (0.107 mmol) of carbonate 2.10 and 44.0 mg (0.322 mmol) of anhydrous K₂CO₃ in 1.5 mL of methanol was stirred at rt for 5 h. The mixture was diluted with water and extracted with Et₂O. The combined organic extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure to give 32.5 mg (87%) of syn 1,3-di-ol 3.1: IR (film) 3394, 2926, 1449 cm⁻¹; H-NMR (400 MHz) δ 0.66 (d, J = 6.8 Hz, 3 H), 1.05-1.28 (m, 6 H), 1.31, 1.51 (s, 6 H), 1.51 (s, 3 H), 1.56-1.79 (m, 6 H), 1.87 (m, 1 H), 2.14-2.22 (m, 1 H), 3.40 (m, 1 H), 3.56 (m, 1 H), 4.18 (d, J = 5.0 Hz, 1 H), 4.49 (ABq, JAB = 12.0 Hz, Δν = 18.7 Hz, 2 H), 5.23 (d, J = 9.1 Hz, 1 H), 7.25-7.35 (m, 5 H); 13C-NMR δ 138.6, 130.2, 130.0, 128.3, 127.6, 127.5, 100.7, 73.1, 71.8, 71.7, 67.2, 39.6, 36.6, 35.0, 33.4, 33.2, 26.2, 26.1, 24.9, 24.0, 14.1, 12.0.

(−)-(1E, 5Z, 3S, 4R)-7-Benzylxoyl-1-cyclohexyl-2,4-dimethyl-1,5-heptadien-3-ol (4.1)

The procedure for diene 2.7 was applied to 125 mg (0.383 mmol) of alkynyl alcohols 2.6 and 12.5 mg of Lindlar's catalyst (10 wt% Pd) under hydrogen in 3 mL of benzene at rt for 5 h to yield 128 mg (quantitative) of crude (Z)-olefin 4.1 which was used for the next step without further purification: H-NMR δ 0.78 (d, J = 6.8 Hz, 3 H), 1.02-1.38 (m, 6 H), 1.50-1.79 (m, 4 H), 1.56 (d, J = 1.3 Hz, 3 H), 2.09-2.20 (m, 1 H), 2.27 (d, J = 2.6 Hz, 1 H), 2.50-2.58 (m, 1 H), 3.53 (dd, J = 7.5, 2.6 Hz, 1 H), 4.05 (dd of ABq,
$J_{ab} = 7.1, 2.5$ Hz, $J_{AB} = 11.5$ Hz, $\Delta \nu = 32$ Hz, 2 H), 4.53 (s, 2 H), 5.18 (d, $J = 9.1$ Hz, 1 H), 5.47 (t, $J = 10.0$ Hz, 1 H), 5.79 (dt, $J = 10.0, 6.6$ Hz, 1 H), $7.25-7.34$ (m, 5 H).

(\pm)-$[1E, 5Z, 3R, 4R]$-7-Benzylxoy-1-cyclohexyl-2,4-dimethyl-1,5-heptadien-3-yl tert-Butyl Carbonate (4.2)

The procedure for tert-butyl carbonate 2.8 was applied to 128 mg (ca. 0.383 mmol) of alcohol 4.2, 65.8 mg (0.574 mmol) of 35 wt% potassium hydride (oil dispersion) and 126 mg (0.574 mmol) of di-tert-butyl dicarbonate in 0.5 mL of DMU and 2 mL of THF at 0 °C for 3 h to give, after chromatography on silica gel (10% Et2O-hexanes), 228 mg of tert-butyl carbonate 4.2 as a colorless liquid (contaminated with a small amount of di-tert-butyl dicarbonate): 1H-NMR δ 0.84 (d, $J = 6.8$ Hz, 3 H), 0.90-1.30 (m, 4 H), 1.39 (s, 9 H), 1.42-1.75 (m, 6 H), 1.57 (d, $J = 1.2$ Hz, 3 H), 2.10-2.19 (m, 1 H), 2.65-2.75 (m, 1 H), 4.09 (dd of ABq, $J_{ab} = 5.7, 1.5$ Hz, $J_{AB} = 12.5$ Hz, $\Delta \nu = 38.9$ Hz, 2 H), 4.50 (s, 2 H), 4.63 (d, $J = 8.9$ Hz, 1 H), 5.26 (d, $J = 9.0$ Hz, 1 H), 5.41 (t, $J = 10.1$ Hz, 1 H), 5.61 (dt, $J = 10.1, 6.2$ Hz, 1 H), 7.24-7.34 (m, 5 H).

Acknowledgments

This investigation was supported by research grant AI31422 from the National Institutes of Health. We thank Glaxo, Inc. for additional support and for granting a leave of absence to Shiping Xie in connection with his selection as an Innovative Project awardee for the 1994-1995 academic year.

References

6. For previous studies on the use of IBr for related iodo carbonate cyclizations, see Duan, J. J-W.; Smith, A. B., III. J. Org. Chem. 1993, 58, 3703.
10. Unless otherwise stated 1H and 13C-NMR spectra were determined at 300 and 100.6 MHz, respectively, on dilute solutions in CDCl3. For typical experimental protocols, see Marshall, J.A.; Wang, X-J. J. Org. Chem. 1991, 56, 960.