Contributions to the Development of New Substitution Patterns of Penicillins: Synthesis of New Penicillin Derivatives and Evaluation of their Porcine Pancreatic Elastase Inhibitory Activity

Carlos E. Boscetti1, Ernesto G. Mata1, Oreste A. Mascaretti1*, Julia A. Cricco2, Gabriela Coux2, Anabella Lodeyro2 and Oscar A. Roveri2*

1Instituto de Química Orgânica de Síntesis (CONICET-UNR)
2Departamento de Química Biológica. Área Biofísica. Facultad de Ciencias Bioquímicas y Farmacêuticas. Universidad Nacional de Rosario, Casilla de Correo 991, 2000 Rosario, Argentina

Received: June 17, 1996

The synthesis of 6α-chloropenicillanate sulfone esters 6a-c, 12, the acetate and benzoate of 3α-hydroxyethyl-6α-chloropenam sulfones 8a-b and pivaloyloxymethyl and benzyl esters of several 6α-(sulfonyloxy)penicillanate sulfones 15, 18a1-a3, 18b1-b3 are reported. When tested as inhibitors of porcine pancreatic elastase, the acetate of 3α-hydroxymethylpenam 8a proved to be more active in comparison with the esters of 3α-carboxylic acid counterparts 6a-c and 12. Compounds with diverse 6α-(sulfonyloxy) substituents showed elastase inhibitory activity improved over the corresponding 6α-chloro derivatives 6a-c and 12; among those, compounds 18a2 and 18b2 were rather unstable, but compounds 18a1, 18a3, 18b1, 18b3 combined fair activity with better stability.

Keywords: elastase inhibitors, penicillins derivatives

Introduction

The concept of structural modification at the C\textsubscript{3} and C\textsubscript{6} position of penam nucleus (1) is of current interest in the study of penicillins derivatives as elastase inhibitors.

While abundant information on diverse substitution patterns of penicillin as antibiotic and β-lactamase inhibitors exist1, the synthesis and applications of 6-substituted penicillanates (2) as elastase inhibitors2 and 2'-Z-substituted anhydropenicillins (3) as carrier in the Antibody-Directed Enzyme Prodrug Therapy (ADEPT)3, have been the subject of very few investigations.

![Penam Nucleus]

\[\text{Penam Nucleus} \]

![Compounds 1-3]

\[\text{Compounds 1-3} \]
Recent research from our laboratory has addressed these issues2,4. Human leukocyte elastase (HLE, EC 3.4.21.37) is a serine protease found in the azurophilic granules of polymorphonuclear leukocytes5. This enzyme has been the subject of extensive studies, both in terms of its biological role in numerous diseases6 and in terms of the development of suitable therapeutic inhibitors to supplement the body’s elastase inhibitory capacity and thereby shift the proposed protease/antiprotease imbalance in pathogenic conditions1,5. The presence of a reactive catalytic-site hydroxyl group affords the opportunity for the development of inhibitors which will form a covalent adduct with the enzyme and thereby interfere with the mechanism of catalysis (i.e., mechanism-based inhibitors).

We have recently reported a preliminary account7 of the structure-activity relationship (SAR) for C-6 substituted penicillin esters with either an α-(sulfonyl)oxy- or an α-chloro functionalities as inhibitors of Porcine Pancreatic Elastase (PPE, EC 3.4.21.36) an enzyme related to HLE8. Here, we report, in details, the synthesis, characterization and evaluation of PPE inhibitory activity of penicillin ester sulfones2.

\[R = -\text{CO}_{2}\text{-CH}_{2}\text{-CO}_{2}\text{(C(CH)}_{3}\text{)}_{3}, -\text{CO}_{2}\text{-CH}_{2}\text{-C}_{6}\text{H}_{5}, -\text{CO}_{2}\text{-CH(} \text{CH}_{3})_{2}, -\text{CO}_{2}\text{-C}(\text{CH}_{3})_{3}, -\text{CH}_{2}\text{OCH}_{2}\text{CH}_{3}, \text{CH}_{2}\text{OOCCH}_{3} \text{H}_{5} \text{ substituted at position 6 with a variety of } \alpha\text{-oriented functionalities (Y = -Cl, -SO}_{3}\text{H, -SO}_{3}\text{CF}_{3}, \text{SO}_{3}\text{CH}_{3}, \text{and -SO}_{3}\text{p-C}_{6}\text{H}_{4}(\text{CH}_{3})}. \]

Experimental

Infrared spectra (IR) were taken on a Bruker IFS 25 FT-IR spectrometer. Proton and carbon magnetic resonance spectra (1H-NMR and 13C-NMR) were taken on a Bruker AC 200 spectrometer. The signal assignments were normaly based upon signal multiplicities, chemical shift rules8, DEPT (Distortionless Enhancement by Polarization Transfer), comparison with related compounds and, in some cases, heteronuclear correlated 2D spectra9. Melting points were taken on an Ernst Leitz melting point apparatus and are uncorrected. Analytical thin-layer chromatography (TLC) was carried out with silica gel 60 F\textsubscript{254} pre-coated aluminium sheets (Merck); flash column chromatography was performed using Merck silica gel 60 (230-400 mesh) according to the procedure developed by Still et al.10

Elastase (EC 3.4.21.36) was purchased from Sigma Chemical Co (Type III, from Porcine Pancreas). A stock solution (1 mg/mL) was prepared in sodium acetate 50 mM (pH 5.5), and frozen at -20°C until used. N-Methoxysuccinyl-Ala-Ala-Pro-Val-p-nitroanilide (Sigma Chemical Co) was dissolved in dimethylsulfoxide (DMSO). Enzyme activity was assayed in potassium phosphate 100 mM, pH 7 (final volume 3 mL). The reaction was started by addition of 10-50 μL of the enzyme stock solution. The release of p-nitroaniline was followed spectrophotometrically at 405 nm in a computer assisted LKB Ultraspec II Plus with a thermostated cell holder (30°C). The inhibitors were dissolved in DMSO. The maximal concentration of DMSO was 2% in the reaction medium. Control experiments were run in all the cases with equal amount of DMSO.

Synthesis of benzyl 6α-chloropenicillanate sulfone (6a)

To a solution of 6α-chloro-3α-chlorocarbonyl-2,2-dimethylpenam sulfone (5)11 (129 mg, 0.45 mmol) in anhydrous chloroform (1 mL) was added dropwise benzyl alcohol (0.104 mL, 1.01 mmol) at room temperature and the resulting solution was stirred at the same temperature for 3 h. The reaction mixture was washed with water (2 x 0.5 mL) and the organic layer was dried (Na\textsubscript{2}SO\textsubscript{4}) and concentrated. The residue was chromographed (hexane/AcOEt, 8:5:1.5) to give 6a (100 mg, 62%) as a white solid; mp 75.5-76.0°C (hexane/CH\textsubscript{2}Cl\textsubscript{2}); IR (KBr) 1805 (β-lactam), 1719 (ester), 1332 and 1118 cm-1 (sulfone); 1H-NMR (200 MHz; CDCl\textsubscript{3}; standard Me\subscript{3}Si) δ 1.27 (s, 3H, α-C\textsubscript{3}), 1.56 (s, 3H, β-C\textsubscript{3}), 4.44 (s, 1H, 3-H), 4.63 (d, J = 1.51 Hz, 1H, 5-H), 5.15 (d, J = 1.51 Hz, 1H, 6-H), 5.20 (d, AB spin system, J = 11.90 Hz, 1H, -O-C\textsubscript{6}H\textsubscript{4}-Ar), 5.30 (d, AB spin system, J = 11.90 Hz, 1H, -O-C\textsubscript{6}H\textsubscript{4}-Ar), 7.39 (s, 5H, Ar-Η ppm); 13C-NMR (50 MHz; CDCl\textsubscript{3}; standard CDCl\textsubscript{3}) δ 16.45 (C-8), 19.73 (C-9), 55.35 (C-6), 62.98 (C-3), 63.12 (C-2), 66.29 (-O-C\textsubscript{6}H\textsubscript{4}-Ar) 69.10 (C-5), 128.75, 128.99 and 134.07 (Ar-Cl), 165.74 (C-7), 165.85 (C=O-C\textsubscript{6}H\textsubscript{4}-CH\textsubscript{2}) ppm.

Synthesis of iso-propyl 6α-chloropenicillanate sulfone (6b)

To a solution of acid chloride 5 (obtaining from the corresponding acid 44 (48.6 mg, 0.18 mmol)) in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (1 mL) was added successively iso-propyl alcohol (0.027 mL, 0.35 mmol) and a solution of triethylamine (0.049 mL, 0.35 mmol) in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (1 mL) and the mixture was stirred at room temperature for 3 h. After removing the solvent in vacuo, the crude material was chromatographed (hexane/AcOEt, 9:1) to give 6b (61.1 mg, 11% from 4); IR (KBr) 1810 (β-lactam), 1752 (ester), 1330 and 1118 cm-1 (sulfone); 1H-NMR (200 MHz; CDCl\textsubscript{3}; standard Me\subscript{3}Si) δ 1.32 [d, J = 6.25 Hz, 3H, -CH(CH\textsubscript{3})\textsubscript{2}], 1.33 [d, J = 6.25 Hz, 3H, -CH(CH\textsubscript{3})\textsubscript{2}], 1.43 (s, 3H, α-C\textsubscript{3}), 1.61 (s, 3H, β-C\textsubscript{3}), 4.39 (s, 1H, 3-H), 4.66 (d, J = 1.50 Hz, 1H, 6-H), 5.14 [sept, J = 6.25 Hz, 1H, -CH(CH\textsubscript{3})\textsubscript{2}], 5.16 (d, J = 1.50 Hz, 1H, 5-H) ppm; 13C-NMR (50 MHz; CDCl\textsubscript{3}; standard CDCl\textsubscript{3}) δ 18.74 (C-8), 19.88 (C-9), 21.65 [-CH(CH\textsubscript{3})\textsubscript{2}], 55.42 (C-6), 63.10 (C-2), 63.16 (C-3), 69.27 (C-5), 71.02 [-CH(CH\textsubscript{3})\textsubscript{2}], 165.32 (C-7), 165.88 (C=O-C\textsubscript{6}H\textsubscript{4}) ppm.

Synthesis of tert-butyl 6α-chloropenicillanate sulfone (6c)

According to a procedure similar to that described above for the preparation of 6b, compound 6c was obtained.
after purification by column chromatography (CHCl₃/EtOH: 9:6:0.4) as a white solid (26% yield from 4); mp 147.0-151.0 °C; IR (KBr) 1794 (β-lactam), 1742 (ester), 1332 and 1116 cm⁻¹ (sulfone); H-NMR (200 MHz; CDCl₃; standard MeSi) δ 1.45 (s, 3H, α-CH₃), 1.53 [s, 9H, -C(CH₃)₃], 1.59 (3H, β-CH₃), 4.33 (s, 1H, 3-H), 4.64 (d, J = 1.51 Hz, 1H, 5-H), 5.15 (d, J = 1.51 Hz, 1H, 6-H), ppm; C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 18.92 (C-8), 19.80 (C-9), 27.90 [-C(CH₃)₃], 55.46 (C-6), 63.15 (C-2), 63.55 (C-3), 69.37 (C-5), 84.62 [-C(CH₃)₃], 164.71 (C-7), 165.90 (C-CO-C) ppm.

General procedure for the selective oxidation of penicillanate sulfide (S⁻) into penicillanate sulfone (SO₂⁻). (Synthesis of pivaloyloxy)methyl 6α-chloropenicillanate (12)

To a solution of (pivaloyloxy)methyl (Pom) 6α-chloropenicillanate 11 (57 mg, 0.163 mmol) in a mixture of acetic acid/water (8.5:1.5) (6.4 mL) was added powdered potassium permanganate (51.5 mg, 0.326 mmol) and the mixture was stirred for 1h. The reaction mixture was then quenched with drops of H₂O₂ until disappearance of color, diluted with CH₂Cl₂ (6 mL) and water (6 mL). The layers were separated and the aqueous layer extracted with CH₂Cl₂ (3 x 6 mL). The combined organic layers were washed with 5% aqueous sodium bicarbonate solution (3 x 6 mL) and water (1 x 6 mL), dried (Na₂SO₄) and the solvent removed under reduced pressure to yield 12 (57 mg, 92%) as white crystals; mp 117.5-118.5 °C, lit. 118.0-120.0 °C; H-NMR (200 MHz; CDCl₃; standard MeSi) δ 1.23 [s, 9H, -C(CH₃)₃], 1.43 (s, 3H, α-CH₃), 1.59 (s, 3H, β-CH₃), 4.46 (s, 1H, 3-H), 4.68 (d, J = 1.53 Hz, 1H, 5-H), 5.18 (d, J = 1.53 Hz, 1H, 6-H), 5.74 (d, AB spin system J = 5.45 Hz, 1H, -O-CH₂-O), 5.96 (d, AB spin system J = 5.45 Hz, 1H, -O-CH₂-O) ppm; C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 18.13 (C-8), 19.72 (C-9), 26.65 [C(CH₃)₃], 38.64 [C(CH₃)₃], 55.32 (C-6), 62.67 (C-5), 62.89 (C-2), 68.96 (C-5), 80.42 (-O-CH₂-O), 164.71 (C-7), 165.84 (-O-CH₂-CH₂), 176.63 [O-CO-C(CH₃)] ppm.

Synthesis of 6α-chloro-2,2-dimethyl-3α-(acetyl) oxymethylpenam sulfone (8a)

To a stirred solution of alcohol 7 (23 mg, 0.091 mmol) and 4-(N,N-dimethylamino)pyridine (DMAP) (cat. amount) in CH₂Cl₂ (1.5 mL) was added dropwise successively triethyamine (0.019 mL, 0.136 mmol) and acetic anhydride (0.013 mL, 0.136 mmol) at room temperature and the mixture was stirred for 1 h. at the same temperature. Then was diluted with CH₂Cl₂ (5 mL) and washed successively with a saturated ammonium chloride solution (2 x 4 mL) and brine (1 x 4 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo to give a colorless residual oil which was chromatographed on silica gel (hexane/AcOEt, 1:2) to give 8a (17 mg, 64%) as white crystals; mp 119.5-121.5 °C; IR (KBr) 1806 (β-lactam), 1740 (ester), 1316 and 1132 cm⁻¹ (sulfone); H-NMR (200 MHz; CDCl₃; standard MeSi) δ 1.46 (s, 3H, α-CH₃), 1.50 (s, 3H, β-CH₃), 2.14 (s, 3H, O-COCH₃), 4.06 (dd, ABX spin system, Jᵥ, Jᵥᵥ, Jᵥᵥᵥ = 3.58 Hz, 1H, 3-H), 4.15 (dd, ABX spin system, Jᵥ, Jᵥᵥ, Jᵥᵥᵥ = 3.58 Hz, 1H, β-CH₂-O), 4.19 (dd, ABX spin system, Jᵥ, Jᵥᵥ, Jᵥᵥᵥ = 3.58 Hz, 1H, -CH₂-O), 4.54 (dd, Jᵥ, Jᵥ˅, Jᵥ˅˅ = 3.58 Hz, 1H, 5-H), 5.14 (d, J = 1.59 Hz, 1H, 6-H), ppm; C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 18.80 (C-8), 18.83 (C-9), 20.58 (O-COCH₃), 55.43 (C-6), 60.50 (C-3), 61.51 (C-CH₂-O), 62.90 (C-2), 69.18 (C-5), 166.69 (C-7), 170.18 (-O-CO-CH₃) ppm.

Synthesis of 6α-chloro-2,2-dimethyl-3α-(benzoyl) oxymethylpenam sulfone (8b)

The procedure for the preparation of 8b from alcohol 7 was the same as described for 8a. The stirred reaction mixture, initially at 0 °C was allowed to warm at room temperature overnight (14 h). Then the mixture was quenched with methanol (3 drops) diluted with CH₂Cl₂ (3 mL) and washed with saturated aqueous sodium bicarbonate solution (2 x 3 mL). The organic layer was dried (Na₂SO₄) and concentrated to a pale yellow oil. Flash chromatography of the crude product with chloroform as eluting solvent, afforded 8b as white needles (yield 62%); mp 172.0-173.5 °C; IR (KBr) 1796 (β-lactam), 1718 (ester), 1318 and 1128 cm⁻¹ (sulfone); H-NMR (200 MHz; CDCl₃; standard MeSi) δ 1.53 (s, 3H, α-CH₃), 1.55 (s, 3H, β-CH₃), 4.19-4.47 (m, 3H, 3-H and C-CH₂-O), 4.59 (d, J = 1.56 Hz, 1H, 6-H), 5.19 (d, J = 1.56 Hz, 1H, 5-H), 7.44-7.66 (m, 3H, Ar-H). 8.08-8.13 (m, 2H, Ar-H) ppm; C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 18.63 (C-8), 19.02 (C-9), 55.30 (C-6), 60.56 (C-3), 62.23 (C-CH₂-O), 62.84 (C-2), 69.03 (C-5), 128.54, 128.75, 129.75 and 133.56 (Ar-C), 165.86 (C-7), 166.69 (-O-CO-Ph) ppm.

Synthesis of (pivaloyloxy)methyl 6α-[(fluorosulfonyl)oxy]penicillanate sulfone (15)

(Pivaloyloxy)methyl 6α-[[(fluorosulfonyl)oxy]penicillanate 14 was oxidized according the same procedure as 12 to give 15 as a white solid (57% yield); mp 74.0-76.0 °C; IR (KBr) 1816 (β-lactam), 1776, 1748 (ester), 1318 and 1112 cm⁻¹ (sulfone); H-NMR (200 MHz; CDCl₃; standard MeSi) δ 1.23 [s, 9H, -C(CH₃)₃], 1.46 (s, 3H, α-CH₃), 1.61 (s, 3H, β-CH₃), 2.49 (s, 1H, 3-H), 4.89 (d, J = 1.46 Hz, 1H, 5-H), 5.76 (d, AB spin system, J = 5.41 Hz, 1H, -O-CH₂-O), 5.89 (d, J = 1.46 Hz, 1H, 6-H), 5.97 (d, AB spin system, J = 5.41 Hz, 1H, -O-CH₂-O) ppm; C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 18.12 (C-8), 19.75 (C-9), 26.71 (C-CH₂-O), 38.73 [C(CH₃)₃], 62.93 (C-5), 63.31 (C-2),
66.57 (C-3), 80.64 (O-CH₂-O), 81.48 (C-6), 161.39 (C-7), 164.28 (-O-OC₂H₅), 176.69 [O-OC₂H₅(CH₃)₂] ppm.

Synthesis of benzyl 6α-[(methanesulfonyl)oxy]penicillanate (17a)

To a solution of benzyl 6α-hydroxypenicillanate 16a₁⃣ (32.2 mg, 0.11 mmol) in anhydrous CH₂Cl₂ (2 mL) at 0 °C was added dropwise successively triethylamine (22 µL, 0.16 mmol) and mesyl chloride (12 µL, 0.16 mmol). The mixture was stirred at 0 °C for 1 h, poured into saturated ammonium chloride solution and the layers separated. The organic layer was washed with saturated ammonium chloride solution (2 x 1 mL) and then stirred for 30 min with water (2 mL) at 0 °C. Finally, phases were separated and the organic one was dried (Na₂SO₄), filtered and concentrated to afford 17a₁ (32.5 mg, 80%) as a white solid; mp 95.0-97.0 °C, lit.¹⁸ 98.0-99.0 °C; IR (KBr) 1784 (β-lactam), 1744, (ester), 1362, 1176 and 954 cm⁻¹ (mesylate); ¹³²H-NMR (200 MHz; CDCl₃; standard Me₃Si) δ 1.40 (s, 3H, α-CH₃), 1.56 (s, 3H, β-CH₃), 3.18 (s, 3H, -SO₂-CH₃) 4.54 (s, 1H, 3-H), 5.19 (d, AB spin system J = 12.65 Hz, 1H, -O-CH₂-Ar), 5.21 (d, AB spin system J = 12.65 Hz, 1H, -O-CH₂-Ar), 5.39 (d, J = 1.38 Hz, 1H, 5-H), 5.47 (d, J = 1.38 Hz, 1H, 6-H), 7.37 (s, 5H, Ar-H) ppm; ¹³²C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 25.23 (C-8), 33.69 (C-9), 38.79 (-SO₂-CH₃), 64.22 (C-2), 67.48 (-O-CH₂-Ar), 68.87 (C-3), 69.18 (C-5), 85.26 (C-6), 128.53, 128.60, 128.66 and 134.45 (Ar-Ç), 164.93 (C-7), 166.45 (C-CO₂-CH₂) ppm.

Synthesis of (pivaloyloxy)methyl 6α-[(methanesulfonyl)oxy]penicillanate (17b)

According to a similar procedure to that used for the synthesis of 17a₁, compound 16b was converted into 17b₁ (85% yield); IR (film) 1788 (β-lactam), 1758, (ester), 1370, 1180, 1112 and 964 cm⁻¹ (mesylate); ¹³²H-NMR (200 MHz; CDCl₃; standard Me₃Si) δ 1.23 (s, 9H, [-CH(CH₃)₂]), 1.50 (s, 3H, α-CH₃), 1.59 (s, 3H, β-CH₃), 3.21 (s, 3H, -SO₂-CH₃), 4.55 (s, 1H, 3-H), 5.41 and 5.48 (d, J = 1.36, 2H, 5-H and 6-H), 5.81 (d, AB spin system J = 5.52 Hz, 1H, -O-CH₂-O), 5.85 (d, AB spin system J = 5.52 Hz, 1H, -O-CH₂-O) ppm; ¹³²C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 25.31 (C-8), 26.78 [-CH(CH₃)₂], 33.57 (C-9), 38.71 [-CH(CH₃)₂], 38.88 (-SO₂-CH₃), 64.15 (C-2), 68.70 (C-3 and C-5), 79.75 (-O-CH₂-O), 85.19 (C-6), 164.99 (C-7), 165.43 (C-CO₂-CH₂), 176.70 [C(O)-O-CO₂H(CH₃)₂] ppm.

Synthesis of benzyl 6α-[(trifluoromethanesulfonyl)oxy]penicillanate (17a₂)

To a stirred solution of benzyl 6α-hydroxypenicillanate 16a₁⃣ (47.2 mg, 0.15 mmol) in anhydrous CH₂Cl₂ (1 mL) at room temperature was added dropwise a solution of tosyl chloride (58.6 mg, 0.31 mmol) in anhydrous CH₂Cl₂ (1 mL) and then pyridine (37 µL, 0.46 mmol). The mixture was stirred at room temperature for 65 h and then quenched with aqueous saturated ammonium chloride solution (1.5 mL), diluted with CH₂Cl₂ (4 mL) and stirred for another 15 min at room temperature. Extractive workup (aqueous saturated NH₄Cl solution) followed by purification by column chromatography (hexane/AcOEt, 9:1) gave 17a₁ (49.6 mg, 70%) as a colorless oil; IR (KBr) 1792 (β-lactam), 1744 (ester), 1376, 1192, and 1178 cm⁻¹ (tosylate); ¹³²H-NMR (200 MHz; CDCl₃; standard Me₃Si) δ 1.35 (s, 3H, α-CH₃), 1.51 (s, 3H, β-CH₃), 2.46 (s, 3H, Ar-CH₃), 4.48 (s, 1H, fonic anhydride (41 µL, 0.24 mmol) in anhydrous CH₂Cl₂ (1 mL) also at 0 °C. The reaction solution was stirred at 0 °C for 10 min and then a mixture of water: dichloromethane (1:1, 2 mL) was added. After separation, the organic layer was washed with water (1 mL), dried (Na₂SO₄), filtered and concentrated to afford a brown oil. Flash chromatography of the crude product with hexane/AcOEt (9:2:0.8) as eluting solvent, afforded 17a₂ as a colorless oil (63.0 mg, 89%); IR (KBr) 1797 (β-lactam), 1746 (ester), 1425, 1246, 1212, 1141 and 957 cm⁻¹ (triflate); ¹³²H-NMR (200 MHz; CDCl₃; standard Me₃Si) δ 1.40 (s, 3H, α-CH₃), 1.57 (s, 3H, β-CH₃), 4.57 (s, 1H, 3-H), 5.21 (d, AB spin system J = 11.83 Hz, 1H, -O-CH₂-Ar), 5.21 (d, AB spin system J = 11.83 Hz, 1H, -O-CH₂-Ar), 5.50 (m, 2H, 5-H and 6-H), 7.37 (s, 5H, Ar-H) ppm; ¹³²C-NMR (50 MHz; CDCl₃; standard CDCl₃) δ 25.13 (C-8), 33.86 (C-9), 64.51 (C-2), 67.64 (-O-CH₂-Ar), 68.88 (C-3), 69.30 (C-5), 88.73 (C-6), 118.26 (q, J = 319 Hz, -CF₃), 128.61, 128.75, and 134.35 (Ar-Ç), 162.03 (C-7), 166.21 (C-CO₂-CH₂) ppm.

Synthesis of (pivaloyloxy)methyl 6α-[(trifluoromethanesulfonyl)oxy]penicillanate (17b₂)

According to a similar procedure to that used for the synthesis of 17a₂, compound 16b was converted into 17b₁ (85% yield); IR (film) 1805 (β-lactam), 1790 and 1785 cm⁻¹ (ester); ¹³²H-NMR (80.13 MHz; CDCl₃; standard Me₃Si) δ 1.22 (s, 9H, [-CH(CH₃)₂]), 1.51 (s, 3H, α-CH₃), 1.59 (s, 3H, β-CH₃), 4.59 (s, 1H, 3-H), 5.52 (m, 2H, 5-H and 6-H), 5.83 (s, 2H, -O-CH₂-O) ppm; ¹³²C-NMR (20.15 MHz; CDCl₃; standard CDCl₃) δ 25.14 (C-8), 26.68 [-CH(CH₃)₂], 33.69 (C-9), 38.63 [-CH(CH₃)₂], 64.36 (C-2), 68.82 (C-5), 69.03 (C-3), 79.77 (-O-CH₂-O), 88.64 (C-6), 118.24 (q, J = 324 Hz, -CF₃), 161.98 (C-7), 165.12 (C-CO₂-CH₂), 176.54 (-CH₂-O-CO₂-C(CH₃)₂) ppm.

Synthesis of benzyl 6α-[(p-toluenesulfonyl)oxy]penicillanate (17a₃)

To a stirred solution of benzyl 6α-hydroxypenicillanate 16a₁⃣ (49.6 mg, 0.16 mmol) in anhydrous CH₂Cl₂ (1 mL) at room temperature was added dropwise 5 min. a solution of trifluoromethanesul-
3-H), 5.15 (d, AB spin system $J = 13.44$ Hz, 1H, -O-CH$_2$-Ar), 5.18 (d, AB spin system $J = 13.44$ Hz, 1H, -O-CH$_2$-Ar), 5.23 (m, 2H, 5-H and 6-H), 7.36 (s, 5H, Ar-H), 7.38 (d, $J = 8.5$ Hz, 2H, -SO$_2$-C$_6$H$_4$-CH$_3$), 7.82 (s, $J = 8.5$ Hz, 2H, -SO$_2$-C$_6$H$_4$-CH$_3$) ppm; 1H-NMR (50 MHz; CDCl$_3$; standard Me$_2$Si) δ 1.23 (s, 9H, [-C(=CH$_2$)$_3$]), 1.44 (s, 3H, α-CH$_3$), 1.59 (s, 3H, β-CH$_3$), 2.32 (s, 3H, -SO$_2$-CH$_3$) 4.45 (s, 1H, 3-H), 4.85 (d, $J = 1.42$, 1H, 5-H), 5.76 (d, AB spin system $J = 6.50$, 1H, -O-CH$_2$-O), 5.77 (d, $J = 1.42$, 1H, 6-H), 5.96 (d, AB spin system $J = 6.50$, 1H, -O-CH$_2$-O) ppm; 13C-NMR (50 MHz; CDCl$_3$; standard CDCl$_3$) δ 18.01 (C-8), 19.73 (C-9), 26.71 [-C(=CH$_2$)$_3$], 38.71 [-C(=CH$_2$)$_3$], 38.82 (-SO$_2$-CH$_3$), 62.64 (C-5), 63.18 (C-2), 67.37 (C-3), 77.61 (C-6), 80.52 (-O-CH$_2$-O), 164.57 (C-7), 164.64 (C-5), 176.66 [-C(=CH$_2$)-O-C(=CH$_2$)$_3$] ppm.

Synthesis of benzyl 6a-[(trifluoromethanesulfonyl)oxy]penicillanate sulfone (18a)

Penicillanate sulfone 18a was prepared according to the general procedure (60% yield); IR (film) 1810 (b-lactam), 1758, (ester), 1432, 1248, 1226, 1140, 952 (triflate), 1328 and 1120 cm$^{-1}$ (sulfone); 1H-NMR (200 MHz; CDCl$_3$; standard Me$_2$Si) δ 1.28 (s, 3H, α-CH$_3$), 1.56 (s, 3H, β-CH$_3$), 4.47 (s, 1H, 3-H), 4.81 (d, $J = 1.48$, 1H, 5-H, 5.21 (d, AB spin system $J = 11.83$, 1H, -O-CH$_2$-Ar), 5.31 (d, AB spin system $J = 11.83$, 1H, -O-CH$_2$-Ar), 5.91 (d, $J = 1.48$, 1H, 6-H, 7.39 (s, 5H, Ar-H) ppm; 13C-NMR (50 MHz; CDCl$_3$; standard CDCl$_3$) δ 18.38 (C-8), 19.68 (C-9), 63.08 (C-3), 63.48 (C-2), 67.31 (C-5), 68.58 (-O-CH$_2$-Ar), 81.07 (C-6), 118.24 (q, $J = 319$ Hz, -CF$_3$), 128.82, 128.86, 129.15 and 133.91 (Ar-C), 161.85 (C-7), 165.35 (C-5), 176.87 [-C(=CH$_2$)-O-C(=CH$_2$)$_3$] ppm.

Synthesis of (pivaloyloxy)methyl 6a-[(methanesulfonyl)oxy]penicillanate sulfone (18h)

Penicillanate sulfone 18h was prepared according to the general procedure (85% yield), as a white solid; mp 141.0-143.0 °C; IR (film) 1810 (b-lactam), 1778, 1754, (ester), 1372, 1178, 1112, 966 (mesylate), 1320 and 1160 cm$^{-1}$ (sulfone); 1H-NMR (200 MHz; CDCl$_3$; standard Me$_2$Si) δ 1.23 (s, 9H, [-C(=CH$_2$)$_3$]), 1.44 (s, 3H, α-CH$_3$), 1.59 (s, 3H, β-CH$_3$), 2.32 (s, 3H, -SO$_2$-CH$_3$) 4.45 (s, 1H, 3-H), 4.85 (d, $J = 1.42$, 1H, 5-H), 5.76 (d, AB spin system $J = 6.50$, 1H, -O-CH$_2$-O), 5.77 (d, $J = 1.42$, 1H, 6-H), 5.96 (d, AB spin system $J = 6.50$, 1H, -O-CH$_2$-O) ppm; 13C-NMR (50 MHz; CDCl$_3$; standard CDCl$_3$) δ 18.01 (C-8), 19.73 (C-9), 26.71 [-C(=CH$_2$)$_3$], 38.71 [-C(=CH$_2$)$_3$], 38.82 (-SO$_2$-CH$_3$), 62.64 (C-5), 63.18 (C-2), 67.37 (C-3), 77.61 (C-6), 80.52 (-O-CH$_2$-O), 164.57 (C-7), 164.64 (C-5), 176.66 [-C(=CH$_2$)-O-C(=CH$_2$)$_3$] ppm.

Synthesis of benzyl 6a-[(trifluoromethanesulfonyl)oxy]penicillanate sulfone (18a)

Penicillanate sulfone 18a was prepared according to the general procedure (60% yield); IR (film) 1810 (b-lactam), 1758, (ester), 1432, 1248, 1226, 1140, 952 (triflate), 1328 and 1120 cm$^{-1}$ (sulfone); 1H-NMR (200 MHz; CDCl$_3$; standard Me$_2$Si) δ 1.28 (s, 3H, α-CH$_3$), 1.56 (s, 3H, β-CH$_3$), 4.47 (s, 1H, 3-H), 4.81 (d, $J = 1.48$, 1H, 5-H, 5.21 (d, AB spin system $J = 11.83$, 1H, -O-CH$_2$-Ar), 5.31 (d, AB spin system $J = 11.83$, 1H, -O-CH$_2$-Ar), 5.91 (d, $J = 1.48$, 1H, 6-H, 7.39 (s, 5H, Ar-H) ppm; 13C-NMR (50 MHz; CDCl$_3$; standard CDCl$_3$) δ 18.38 (C-8), 19.68 (C-9), 63.08 (C-3), 63.48 (C-2), 67.31 (C-5), 68.58 (-O-CH$_2$-Ar), 81.07 (C-6), 118.24 (q, $J = 319$ Hz, -CF$_3$), 128.82, 128.86, 129.15 and 133.91 (Ar-C), 161.85 (C-7), 165.35 (C-5), 176.87 [-C(=CH$_2$)-O-C(=CH$_2$)$_3$] ppm.
Results and Discussion

Synthesis of penicillin ester sulfones

The synthesis of the benzyl, iso-propyl and tert-butyl 6α-chloropenicillanates sulfones 6α-c, 6α-chloro-2,2-dimethyl-3α-(acetyl)oxyethylmethyl (8α), and 3α-(benzoyl)oxyethylpenam sulfones (8β) is shown in Scheme 1. The starting material was 6α-chloropenicillanic acid sulfone (4)\(^{17}\). Conversion of 4 into the 6α-chloro-2,2-dimethyl-3α-chlorocarbonylpenam sulfone (5) in 95% isolated yield was accomplished by oxalyl chloride and dimethylformamide\(^{11}\) in benzene at room temperature.

Subsequent treatment of 5 with the appropriate alcohol (benzyl, iso-propyl and tert-butyl) afforded the esters 6α-c. Alternatively, reduction of 4 with borane-methyl sulfide complex\(^{13}\) afforded the alcohol 7 which was then treated with acetic anhydride or benzyl chloride to give the corresponding acetyl (8α) and benzoyl (8β) derivatives, respectively.

The synthesis of (pivaloyloxy)methyl (Pom) 6α-chloropenicillanate sulfone (12), was performed by diazotization-hydrochlorination of ester 10 using the methodology reported by McMillan and Stoodley\(^{18}\), and subsequent oxidation (Scheme 2).

Synthesis of 6α-(sulfonyloxy)penicillanates

We have found that the fluoroaryl group can be conveniently and stereospecifically introduced in the 6α orientation by a single-step procedure in a reasonable yield (63%) by treatment of Pom 6-diazopenicillanate (13) with sulfuric acid in methylene chloride\(^{14}\); oxidation gave the corresponding sulfone (15) (Scheme 2).

The preparation of benzyl 6α-hydroxypenicillanate (16b) has been described by Sheehan et al.\(^{15}\). The synthesis
Scheme 2.

of Pom 6α-hydroxypenicillanate (16a) from 13, was done following that procedure (Scheme 3). These carboxylic esters reacted with mesyl chloride, tosyl chloride or trifluoromethanesulfonic anhydride to give the corresponding benzyl and Pom 6α-methanesulfonyl (17a1 and 17b1), 6α-trifluoromethanesulfonyl (17a2 and 17b2) and 6α-p-toluenesulfonyl (17a3 and 17b3) derivatives in good yield should be 70 to 90%.

Oxidation gave the corresponding sulfones in very good yields (18a1-3, 18b1-3). The preparation of Pom 6α-(trifluoromethanesulfonyl)oxyypenicillanate (17b2) was previously reported by us using a different methodology.

Scheme 3.

Inhibition Studies

In Table 1 are shown the IC50 values obtained for the inhibition of PPE by the novel compounds under study. For comparison purposes, values obtained with previously studied compounds (19 and 20) are also included. The tert-butyl, iso-propyl (6b, c) as well as the methyl (19) esters were only weakly active. On the other hand, IC50 values obtained with Pom double ester (12) and benzyl ester (6a) were at least five times smaller than those obtained with the branched and alkyl unbranched esters. Pivaloyl (20) and acetyl (8a) esters of 3α-hy-
Table 1. In vitro inhibition of PPE by novel penicillin derivatives.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Inhibition [IC₅₀ (μM)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>instantaneous</td>
</tr>
<tr>
<td>6a</td>
<td>205 ± 40</td>
</tr>
<tr>
<td>6b</td>
<td>1160 ± 60</td>
</tr>
<tr>
<td>6c</td>
<td>1300 ± 230</td>
</tr>
<tr>
<td>8a</td>
<td>57 ± 6</td>
</tr>
<tr>
<td>8b</td>
<td>N.D.</td>
</tr>
<tr>
<td>12</td>
<td>280 ± 90</td>
</tr>
<tr>
<td>15</td>
<td>16.7 ± 3.1</td>
</tr>
<tr>
<td>19b</td>
<td>950 (44 ± 3%)d</td>
</tr>
<tr>
<td>20b</td>
<td>15 ± 2</td>
</tr>
<tr>
<td>18a₁</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>18a₂</td>
<td>0.68 ± 0.09</td>
</tr>
<tr>
<td>18a₃</td>
<td>23 ± 6</td>
</tr>
<tr>
<td>18b₁</td>
<td>4.3 ± 0.4</td>
</tr>
<tr>
<td>18b₂</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>18b₃</td>
<td>2.1 ± 0.2</td>
</tr>
</tbody>
</table>

Compounds 6a and 18a₃ were previously reported by Thompson et al.²¹ with IC₅₀ values against HLE of 16 and 0.05 μM, respectively. These compounds were previously reported by us.²⁰ Not determined due to insolubility of the compound in the reaction medium. Maximum [I] used in the assays; mean inhibition and its standard error obtained are shown in parenthesis. IC₅₀ values with preincubation were not determined due to instability of the compounds in the reaction medium.

droxymethyl-6α-chloropenam sulfones were even more potent than the Pom double esters and benzyl esters. None of these compounds are good candidates for a mechanism-based inhibition since: i) it could not be observed a significant decrease in IC₅₀ values by preincubation of the enzyme with the inhibitor; and ii) it was not apparent a time-dependent inhibition.

In an attempt to improve activity we decided to prepare new analogues by introducing different 6α-(sulfonyl)oxy substituents, following previously reported results of Thompson et al. on HLE inhibition of penicillin esters. The lowest IC₅₀ values without preincubation were obtained with the 6α-CF₃SO₂- derivatives (18a₂ and 18b₂). Such compounds, as well as the FSO₂- derivative 15 were so unstable that IC₅₀ values with preincubation could not be determined (see Table 1). On the other hand, compounds 18a₁, 18a₃, 18b₁, and 18b₃ (containing CH₃SO₂- or (p-CH₃)₂C₆H₄SO₂- substituents at C-6) have better stability and exhibited rather low instantaneous IC₅₀ values. The IC₅₀ Values obtained for these compounds when they were preincubated with the enzyme for 10 min, were four to fifteen times lower than those obtained without preincubation. Moreover, they showed a clearly time-dependent inhibition. Therefore, we decided to study thoroughly the kinetic behavior of compound 18a₁.

A procedure similar to that reported by others was used²⁰. Fig. 1A shows a typical assay where it can be clearly seen the time-dependency of the inhibition. From similar assays, carried out at different inhibitor and substrate con-

Figure 1. Time-dependent inhibition of PPE in vitro activity by compound 18a₁. (A) The enzyme activity was measured as indicated under Experimental. The line is the reaction time-course obtained with 590 μM substrate and 2.95 μM inhibitor. The reaction was started by the addition of 17 μg of PPE. A control run carried out in the absence of the inhibitor yielded a linear progress curve at least during 10 min. (B) The slopes at different reaction times of progress curves similar to that shown in Fig. 1(A) were determined by means of a Reaction Rate Software from LKB. The points indicate the residual activity (v/v₀) estimated at different reaction times and at different inhibitor concentrations: 0.49 (O), 0.99 (C), 2.95 (A) and 8.72 μM (■). Substrate concentration was 590 μM. The reactions were started by the addition of 17 - 42 μg PPE. The solid lines were obtained by least-square regression analysis to a single exponential decay, from which the pseudo-first order reaction constants (kobs) and their standard deviations could be also estimated.
concentrations, the values of velocity at different reaction times could be estimated. In all cases, the decrease in the enzymatic velocity could be fitted to a single exponential decay and the pseudo-first order reaction constant \(k_{\text{obs}} \) and the initial velocity \(v_0 \) could be estimated. In Fig. 1B a semilogarithmic plot of \(v/v_0 \) vs time is shown to illustrate the kinetics of enzyme inactivation.

The \(k_{\text{obs}} \) values depended on \([I]/(K_{\text{app}}[S]_0+K_{\text{m}}) \) \(([I]^\prime) \) according to a rectangular hyperbola (Fig. 2). From the fitting of the experimental \(k_{\text{obs}} \) values to such a rectangular hyperbola, the values of \(K_1 (7.4 \pm 1.4 \, \mu M) \) and \(k_{\text{inact}} (2.5 \pm 0.3 \, \text{min}^{-1}) \) could be also estimated (see Scheme 4). Therefore, the kinetic behavior of compound 18a1 is consistent with that of a mechanism-based inhibitor.

As we mentioned above compound 18b2 was rather unstable. It decomposed rapidly in water solutions \((t_{1/2} < 0.5 \, \text{min}) \). In Fig. 3A it is shown a typical enzymatic assay. After the addition of the enzyme, a linear increase of absorbance was obtained. When the compound 18b2 was added (after 9 min of reaction) a strong inhibition was instantaneously produced which was followed by a slow reactivation of the enzyme. The instantaneous inhibition corresponded well to a competitive one with a \(K_i = 0.3 \, \mu M \). We estimated from the curve in Fig. 3A, the reaction velocities at different reaction times. The data obtained are shown in Fig. 3B.

Scheme 4.

![Scheme 4](image)

Figure 2. Estimation of \(K_1 \) and \(k_i \) for the reaction between compound 18a1 with PPE. The values of \(k_{\text{obs}}(O) \) obtained as indicated in Fig. 1-B at different inhibitor and substrate concentrations were plotted against \([I]^\prime \) which is equal to \([I]/(K_{M}([S]_{0})/K_{M}) \). The error bars represent the standard deviations. The solid line indicate the fitting of the estimated \(k_{\text{obs}} \) values to the following equation: \(k_{\text{obs}} = k_{\text{inact}}[I]^\prime/(K_{i}+[I]^\prime) \). The fitting was carried out by non-linear regression analysis using a least-square algorithm.

Figure 3. Slow reactivation of PPE inhibited by the unstable compound 18b2. (A) The assay conditions are similar than those described under Experimental. Substrate concentration was 850 \(\mu M \). The reaction was started by the addition of 0.8 \(\mu g \) PPE. After 9 min 1 \(\mu M \) inhibitor was added. A control experiment was run without inhibitor. The time course of the reaction was under that conditions linear up to 100 min. (B) The points \((O) \) represent the values of velocity calculated at different reaction times from the progress curve in Fig. 3(A). Such values have been calculated as \(\Delta \text{Abs/} \Delta t \) every 30 s and processed by a smooth procedure. The solid line drawn before the addition of the inhibitor \((\text{time} < 9 \, \text{min}) \) corresponds to the uninhibited reaction. The solid line drawn after the addition of the inhibitor \((\text{time} > 9 \, \text{min}) \) represents the fitting of the estimated reaction velocities to an exponential increase to an asymptote (see equation in the text). The fitting was carried out by non-linear regression analysis using a least-square algorithm.
A constant velocity was obtained till the inhibitor was added. Afterwards a fast drop in the reaction velocity could be observed. This almost instantaneous decrease in velocity was followed by a slow increase that could be fitted to the following equation:

\[
(\text{velocity})_{t=9 \text{ min}} = (\text{velocity})_0 + \left((\text{velocity})_0 - (\text{velocity})_{t=9 \text{ min}} \right) \left(1 - e^{-kt} \right)
\]

The estimated velocity at \(t = \infty \), when the [I] is zero due to its unstability, was only 65% of the velocity of the uninhibited reaction (see Table 2) indicating that complete reactivation could be achieved. Hence, in spite of the fact that compound 18b2 is rather unstable, it is capable of inhibiting the enzyme in an irreversible manner. Therefore, it is also likely that compound 18b2 behaves as a mechanism-based inhibitor.

Two alternative mechanisms for the reaction of PPE with 18b2, that take into account the results described above, are shown in Scheme 5.

Conclusion

The structure-activity relationships studies around the substituents at C-3α and C-6α positions of the penam sulfones 6a-c, 8a-b, 12, 15, 18a1-a3, and 18b1-b3 as inhibitors of PPE has been extended20 and have demonstrated that these compounds may be fruitfully exploited in designing new elastase inhibitors.

Table 2. Instantaneous inhibition of PPE by 18b2 and slow reactivation due to its unstability.

<table>
<thead>
<tr>
<th>Reaction time</th>
<th>Velocity (ΔAbs/min)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 9 min</td>
<td>13.0 x 10^{-3}</td>
<td>-</td>
</tr>
<tr>
<td>9 min</td>
<td>3.3 x 10^{-3} ± 0.3 x 10^{-3}</td>
<td>75</td>
</tr>
<tr>
<td>> 9 min</td>
<td>3.3 x 10^{-3} ± 5.1 (1 - e^{-kt})</td>
<td>variable</td>
</tr>
<tr>
<td>∞</td>
<td>8.4 x 10^{-3} ± 0.6 x 10^{-3}</td>
<td>35</td>
</tr>
</tbody>
</table>

* The values of velocity at time ≤ 9 min were obtained by non-linear regression analysis of the data in Figure 3B as indicated in the legend of the same figure and in the text. The value at t < 9 min was the mean of the values obtained at shorter times.

Scheme 5.

It is noteworthy that the esters of 3α-hydroxymethyl-6α-chloropenam sulfones (8a and 20) markedly improve the inhibitory activity in comparison with the corresponding esters of 3α-carboxylic acid-6α-chloropenam sulfones 6a-c and 12. On the other hand, introduction of electron withdrawing 6α-sulfonyl)oxy substituents in the penam nucleus allowed us to compare the effects that these sulfonyl)oxy have on PPE activity in relation to the known compound 18a3. The SAR study indicated (see Table 1) that compounds 18a2 and 18b2 are the most potent in this series. However, the less potent compounds 18a1, 18a3, 18b1 and 18b3 were shown to have better stability.

SAR studies accumulated to this date indicate that the essential structural requirements for good elastase inhibitory activity for penicillin derivatives must contain: (i) the electrophilic carbonyl group of β-lactam ring, (ii) the sulfone moiety, (iii) an electron withdrawing group at C-6α position, as well as (iv) a neutral substituent at C-3α position. (See Fig. 4).

Acknowledgment

The authors would like to thank CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) for financial support. One of us (O.A.R.) also thanks Fundación Antorchas and Universidad Nacional de Rosario for financial assistance.

References

1. For a recent review on β-lactam antibiotics as inhibitors of transpeptidases and β-lactam compounds as

![Figure 4](image-url)

7. For a recent review on the X-ray crystal structures, mechanism, substrate specificity of both HLE and PPE, see: Bode, W.; Meyer, F. *Prom. in Biomolec. Sci.* Biochemistry 1994, 45, 679-749.

20. Thompson K.R.; Finke, P.E.; Shah S.K.; Aske, B.M.