Recent Papers - Machine Learning Special Issue
Reviews/Accounts - last 5 years
Bárbara F. Farias ; Miller S. Ferreira
; Daniel O. Miranda
; Tayná R. Nunes; Natália F. Pereira; Patrícia F. Espuri
;
Jaqueline P. Januario ; Fábio A. Colombo
; Marcos J. Marques
; João L. B. Zanin
; Marisi G. Soares
; Thiago B. de Souza
; Diogo T. Carvalho
; Daniela A. Chagas-Paula
; Danielle F. Dias
Application of machine learning and computational tools to predict antileishmanial activity, emphasizing the synergy of computational and experimental methods in developing novel therapeutic agents.
Total access: 139
Supplementary InformationTotal access: 139
Ingrid G. B. L. Cruz; Flávia R. P. Sales; Wallace D. Fragoso ; Lúcio R. C. Castellano; Fabyan E. L. Beltrão; Talita N. Cardoso;
Maísa S. de Oliveira; Sherlan G. Lemos
The blood composition imbalance following coronavirus disease (COVID-19) causes a systematic change in impedance, which can be modelled by multivariate analysis.
Total access: 126
Supplementary InformationTotal access: 126
Karime Zeraik A. Domingues; Alexandre de F. Cobre; Mariana M. Fachi; Raul Edison L. Lazo; Luana M. Ferreira;
Roberto Pontarolo
This study utilizes Quantitative Structure-Activity Relationship (QSAR)-based machine learning models, validated with bioactivity data median inhibitory concentration (IC50) of compounds against Trypanosoma brucei and Trypanosoma cruzi, for screening Food and Drug Administration (FDA)-approved compounds as candidates for repurposing in the treatment of both trypanosomiases.
Total access: 143
Supplementary InformationTotal access: 143
Edilson B. Alencar Filho ; Rosalvo F. Oliveira Neto; Vanessa C. Santos; Allysson L. S. Ferreira
De novo design of a new lead compound with potential inhibitory effect on monkeypox virus F13 protein (VP37) by deep reinforcement learning and structure-based drug design.
Total access: 174
Supplementary InformationTotal access: 174
Anderson J. A. B. dos Santos; Paulo A. Netz
Machine learning combined with virtual screening has enabled the discovery of a significant variety of molecules exhibiting high affinity with shikimate kinase. Subsequent evaluation through molecular dynamics and free energy calculations has facilitated the identification of potential inhibitor candidates.
Total access: 205
Supplementary InformationTotal access: 205
Matheus L. Silva; João L. Baldim; Thais A. Costa-Silva; Maiara Amaral; Maiara M. Romanelli; Erica V. C. Levatti; Andre G. Tempone; João Henrique G. Lago
Machine learning and multivariate statistical analyses identified molecular features correlated with biological activity of phenylpropanoid against Trypanosoma cruzi.
Total access: 545
Supplementary InformationTotal access: 545
Online version ISSN 1678-4790 Printed version ISSN 0103-5053
Journal of the Brazilian Chemical Society
JBCS Editorial and Publishing Office
University of Campinas - UNICAMP
13083-970 Campinas-SP, Brazil
Free access