JBCS

4:11, Sat Feb 22

Open Access/APCs

First slide
Second slide
Third slide
Third slide

Recent Papers - Machine Learning Special Issue




Full Paper J. Braz. Chem. Soc. 2025

Computational Modeling and Biological Evaluation of Benzophenone Derivatives as Antileishmanial Agents

Bárbara F. Farias ; Miller S. Ferreira ; Daniel O. Miranda ; Tayná R. Nunes; Natália F. Pereira; Patrícia F. Espuri ;
Jaqueline P. Januario ; Fábio A. Colombo ; Marcos J. Marques ; João L. B. Zanin ; Marisi G. Soares ; Thiago B. de Souza ; Diogo T. Carvalho ; Daniela A. Chagas-Paula ; Danielle F. Dias

Application of machine learning and computational tools to predict antileishmanial activity, emphasizing the synergy of computational and experimental methods in developing novel therapeutic agents.

https://dx.doi.org/10.21577/0103-5053.20250004

Published online: February 14, 2025.

 

PDF

Total access: 139

  Supplementary Information 

Total access: 139


J. Braz. Chem. Soc. 2025

Discrimination between COVID-19 Positive and Negative Blood Sera Using an Unmodified Disposable Impedimetric Sensor and Multivariate Analysis

Ingrid G. B. L. Cruz; Flávia R. P. Sales; Wallace D. Fragoso ; Lúcio R. C. Castellano; Fabyan E. L. Beltrão; Talita N. Cardoso;
Maísa S. de Oliveira; Sherlan G. Lemos

The blood composition imbalance following coronavirus disease (COVID-19) causes a systematic change in impedance, which can be modelled by multivariate analysis.

https://dx.doi.org/10.21577/0103-5053.20250029

Published online: February 14, 2025.

 

PDF

Total access: 126

  Supplementary Information 

Total access: 126


J. Braz. Chem. Soc. 2025

Drug Repurposing for Trypanosomiasis: Using Machine Learning Models and Polypharmacology to Identify Multitarget Candidates

Karime Zeraik A. Domingues; Alexandre de F. Cobre; Mariana M. Fachi; Raul Edison L. Lazo; Luana M. Ferreira;
Roberto Pontarolo

This study utilizes Quantitative Structure-Activity Relationship (QSAR)-based machine learning models, validated with bioactivity data median inhibitory concentration (IC50) of compounds against Trypanosoma brucei and Trypanosoma cruzi, for screening Food and Drug Administration (FDA)-approved compounds as candidates for repurposing in the treatment of both trypanosomiases.

https://dx.doi.org/10.21577/0103-5053.20250028

Published online: February 13, 2025.

 

PDF

Total access: 143

  Supplementary Information 

Total access: 143


J. Braz. Chem. Soc. 2025

Deep Reinforcement Learning and Structure-Based Approaches in the de novo Design of a New Potential Inhibitor of F13 Protein from Monkeypox Virus

Edilson B. Alencar Filho ; Rosalvo F. Oliveira Neto; Vanessa C. Santos; Allysson L. S. Ferreira

De novo design of a new lead compound with potential inhibitory effect on monkeypox virus F13 protein (VP37) by deep reinforcement learning and structure-based drug design.

https://dx.doi.org/10.21577/0103-5053.20250022

Published online: February 6, 2025.

 

PDF

Total access: 174

  Supplementary Information 

Total access: 174


J. Braz. Chem. Soc. 2025

Computational Investigations on Inhibitors of Mycobacterium tuberculosis Shikimate Kinase: Machine Learning, Docking, Molecular Dynamics and Free Energy Calculations

Anderson J. A. B. dos Santos; Paulo A. Netz

Machine learning combined with virtual screening has enabled the discovery of a significant variety of molecules exhibiting high affinity with shikimate kinase. Subsequent evaluation through molecular dynamics and free energy calculations has facilitated the identification of potential inhibitor candidates.

https://dx.doi.org/10.21577/0103-5053.20250016

Published online: January 31, 2025.

 

PDF

Total access: 205

  Supplementary Information 

Total access: 205


Short Report J. Braz. Chem. Soc. 2024

Effect of the Alkyl Side Chain of Antitrypanosomal Cinnamate, p-Coumarate, and Ferulate n-Alkyl Esters Using Multivariate Analysis and Computer-Aided Drug Design

Matheus L. Silva; João L. Baldim; Thais A. Costa-Silva; Maiara Amaral; Maiara M. Romanelli; Erica V. C. Levatti; Andre G. Tempone; João Henrique G. Lago

Machine learning and multivariate statistical analyses identified molecular features correlated with biological activity of phenylpropanoid against Trypanosoma cruzi.

https://dx.doi.org/10.21577/0103-5053.20240203

Published online: October 28, 2024.

 

PDF

Total access: 545

  Supplementary Information 

Total access: 545

Online version ISSN 1678-4790 Printed version ISSN 0103-5053
Journal of the Brazilian Chemical Society
JBCS Editorial and Publishing Office
University of Campinas - UNICAMP
13083-970 Campinas-SP, Brazil

Free access

GN1