Recent Papers - Machine Learning Special Issue
Reviews/Accounts - last 5 years
Francisco J. Araujo ; Denise C. Hissa; Celso S. Nagano; Luciana R. B. Gonçalves; Vânia M. M. Melo
Bacillus subtilis TIM27, isolated from mangrove sediments, produced the BiosT27 biosurfactant and the ProT27 subtilisin, exhibiting protease and esterase activities. When tested together as detergent additives, they demonstrated excellent stain removal performance.
Xiaobing Zhao; Weichen Wang; Jun Liu ; Meng Lian; Youjun Yan
; Guofu Huang; Yongwei Li; Xinzhen Feng
A highly efficient hypocrystalline V-P-C catalyst with a porous honeycomb structure is utilized for the continuous production of acrylic acid through glycerol dehydration.
Rômulo P. de Almeida; Sara R. S. Peçanha; Luanda A. do Nascimento; Daniela F. Hermínio; Lêda Cristina da Silva ;
Ana Cláudia V. de Araújo; Ivoneide C. L. Barros; Beate S. Santos
ZnO and Ni-Al-Oxide associated with Ag prismatic nanoplatelets as efficient materials for the photocatalytic degradation of Remazol Black 5 and Methylene Blue.
Andressa Rafaella S. Bruni ; Eloize S. Alves; Talita Aparecida F. Campos; Lívia C. Carvalho; Oscar O. Santos Júnior
A review of the functionalities of natural antioxidants with sustainable food packaging.
Gabriel B. L. Vitorino; Jackson R. S. Silva; Carlos A. de Souza; Amanda C. O. D. Barros; Ivo D. L. Silva; Glória M. Vinhas;
Adriano N. Simões; Giselle B. Bezerra; José F. Q. Pereira ; Andréa M. S. S. Brito
Representative process of atmospheric degradation study in a semiarid climate of pure poly (butylene adipate-co-terephthalate) films and those with orange oil additives using conventional and machine learning methods.
Marcelo C. Costa; Adeildo Junior de Oliveira; João Paulo T. S. Santos; Vinicius Del Colle
Phenol degradation was studied by advanced oxidative processes using different approaches and the maxima efficiency obtained was 99% after 120 min.
João L. Baldim ; Welton Rosa; Thais A. C. Silva; Daiane D. Ferreira; Andre Gustavo Tempone; Daniela Aparecida C. de Paula
; Marisi G. Soares; João Henrique G. Lago
From chemical compounds to predicting the antitrypanosomal activity of new candidates against Trypanosoma cruzi trypomastigotes.
Rafaela M. de Angelo; Vinícius G. Maltarollo; João Henrique G. Lago; Kathia Maria Honorio
Machine learning models were used to predict the biological activity of natural products against Schistosoma mansoni. Virtual screening identified 14 promising compounds, which were further analyzed for absorption, distribution, metabolism, excretion and toxicity (ADMET) properties.
Bárbara S. Rodrigues ; Natalia G. Rosa; André S. Polo
This paper advances sustainability by introducing an eco-friendly solvent for perovskite solar cell fabrication, reducing its environmental impact.
Paula S. Pinto ; Rayane C. F. Silva; Rubens L. de Freitas Filho
; Luisa O. Santos
; Sarah D. Pereira
; Ana Paula C. Teixeira
Mesoporous carbon-based materials from biomass can be produced through various synthetic methods and have diverse environmental applications.
This work paper the applications of Natural Language Processing (NLP) and Large Language Models (LLMs) in chemistry and materials science, highlighting their role in chemical entity recognition, reaction prediction, materials discovery, and literature analysis.
Ariane R. S. Rossin; Arthur R. S. Kammler; Marlize F. Barbosa; Mônica L. Aguiar; Gabriela B. Medeiros; Eduardo Radovanovic;
Wilker Caetano; Douglas C. Dragunski
Development of a photodynamic inactivation-enhanced air filtration system using nonwoven polypropylene coated with electrospun nanofibers.
Ellen Jessica M. P. Campos ; Carin von Mühlen
The evolution of environmental analysis using stir bar sorptive extraction (SBSE) highlights its growing applications in detecting environmental contaminants. Recent advancements emphasize its use in analytical chemistry, particularly with gas chromatography, for enhanced sensitivity and precision. Current research reviews the latest applications and discusses present capabilities while forecasting future trends, such as the development of advanced sorptive materials and integration with innovative analytical platforms, paving the way for more sustainable and efficient environmental monitoring solutions.
Mayra N. Moura ; Jenifer R. Almeida
; Luma B. Magnago
; Ana C. S. Campos
; Edson L. D. Coelho
; Talita M. de Oliveira; Tainara R. Neves
; Sandra A. D. Ferreira
; Fabielle C. Marques
; Maria F. F. Lelis
; Marcos B. J. G. Freitas
Mixed oxide synthesis from the recycling of notebook batteries and abrasive sludge for application in photocatalysis and pseudocapacitor.
Igor H. Sanches; Francisco L. Feitosa; Jade M. Lemos; Sabrina Silva-Mendonça; Ester Souza; Victoria F. Cabral; José T. Moreira-Filho; Henric Gil; Bruno J. Neves; Rodolpho C. Braga; Joyce V. V. B. Borba; Carolina H. Andrade
The figure illustrates the core components of quantitative structure-activity relationship (QSAR)-Lit, a platform designed to streamline the QSAR modeling process. It encompasses data curation, descriptor calculation, machine learning, and virtual screening, enabling seamless and efficient analysis for drug discovery applications.
Paloma E. Carvalho; Maiara R. Salvador; Bárbara G. R. Fernandes; Cleonice A. Souza; Maria A. G. Carneiro; Roberta M. Cachuba; Bolivar R. Amaro; Alan R. Oliveira; Caio C. S. Alves; Alessandra P. Carli; Jeferson G. da Silva; Ângelo M. L. Denadai ;
Sandra B. R. Castro
Synthesis, characterization, and evaluation of the immunomodulatory and anti-inflammatory activity of RhCl3, RhIII/beta cyclodextrin (βCD) and RhIII/hydroxypropyl-beta-cyclodextrin (HPβCD).
Thalisson A. de Souza ; Alan F. Alves
; Nikole D. T. Lira
; Samuel P. Cibulski
; Luiz H. A. Pereira
; Lucas S. Abreu
;
Josean F. Tavares ; Marcus T. Scotti
; Marcelo S. da Silva
The present work describes the use of chemotaxonomy to identify chemical patterns of diterpenes along four Euphorbiaceae genera and it may guide future research in systematics, phytochemistry, and pharmacology fields.
Renan A. dos Santos ; Yeda M. B. de Almeida
; Samara A. C. Andrade
; Celso S. Caldas; Johnnatan D. de Freitas;
Clara A. C. B. Costa
This study investigates the effects of pH, ammonium sulfate supplementation, and refrigeration on higher alcohols production in sugarcane molasses at a microdistillery scale, highlighting their impact on isoamyl alcohol production (A), isobutanol production (B), and the A/B ratio.
Bruce S. Cardoso; Juliana G. M. Lima; Luciano Ribeiro; José R. Corrêa; Luciana M. Ramos
We report the synthesis of 5-arylidene barbituric acids under optimized conditions by condensation reaction between aromatic aldehydes and barbituric acid using ionic liquid catalyst. The arylidene barbiturates were tested for antimicrobial activity using two bacteria. Quantum chemical calculations were performed using the DFT/M062X/6-311++G(d,p) method to optimize the structure and principal component analysis indicated bioactivity.
Thais R. Bombarda ; Marina L. Fontes
; Rafael Sábio; Andréia Meneguin; Amanda Surur; Carla Raquel Fontana; Wilton Lustri;
Nathália Fregonezi; Flávia Nogueira; Hernane S. Barud
The synthesis of regenerated cellulose sponge with silver nanoparticles (RCS@AgNPs) biocomposites via a hydrothermal method demonstrated cytocompatibility with fibroblasts, absence of mutagenicity, and antimicrobial activity against both Gram-positive and Gram-negative bacteria.
Leonel Paccosonco-Sucapuca ; José Valeriano-Zapana
; Rodolfo Sanchez-Valencia
; Alex H. De La Cruz
;
Daniel Alvarez-Tolentino ; Roger Aguilar-Rojas
; Daniel Susanibar-Sandoval
Sources of toxic elements in particulate matter (PM10) and associated risks in educational centers.
Maicon Pierre Lourenço ; Mosayeb Naseri; Lizandra Barrios Herrera; Hadi Zadeh-Haghighi
; Daya Gaur; Christoph Simon;
Dennis R. Salahub
A quantum active learning method (QAL) for automatic structural determination of doped materials has been developed and implemented in the QMLMaterial software. QAL uses quantum circuits for data encoding to create quantum machine learning models on-the-fly.
Tianci Xu; Zhiguo Zhang; Siqi Deng; Xiaohui Du; Chunhua Xie; Hongling Li; Ming Bu
Design and synthesis of novel ergosterol peroxide derivatives as apoptotic inducers through mitochondria-related pathways.
Leandro C. da Silva; Renata Menger; Gabriel N. Fraga; Ariane Regina S. Rossin; Douglas C. Dragunski ; Renato Eising
Electrospun polyvinyl alcohol (PVA) nanofibrous mats with poly(amidoamine) (PAMAM) dendrimers and ibuprofen were developed and characterized. The nanofibrous mats demonstrated controlled drug release, which indicates their potential for advanced drug delivery applications.
Ana Beatriz S. Barbosa; Karen Karla F. de Sousa; Alessandra M. Balieiro; José Rogério A. Silva ; Fábio Alberto de Molfetta
Benzimidazole derivatives were identified as potential cruzain (Cz) inhibitors through molecular modelling.
Ana Paula S. Figueiredo; Junio R. Botelho; Marcia Helena C. Nascimento ; Maria Cristina Canela
; Royston Goodacre;
Paulo R. Filgueiras; Murilo O. Souza
This study employs supervised learning methods, including Partial Least Squares Discriminant Analysis (PLS-DA) with bootstrap resampling and Support Vector Machine (SVM) ensemble, to analyze biogenic volatile organic compounds (BVOCs) emissions in the Atlantic Forest, achieving high classification accuracy.
Noyala S. C. Fonseca; Alan S. dos Santos; Yiu Lau Lam; Luís A. M. Pontes; Roger T. F. Fréty ; Emerson A. Sales
A model molecule tetradecanoic (myristic) acid was pyrolyzed under inert atmosphere in the presence of fresh and equilibrium Fluidized Catalytic Cracking (FCC) catalysts, containing two different levels of rare earth. Deoxygenated molecules were produced, potential precursors for green gasoline, kerosene and diesel production.
Kaíque A. D'Oliveira; Nícolas Glanzmann; Adilson D. da Silva; Carlos E. T. Bruzeguini; Marcos A. Ribeiro; Christian S. C. Canales;
Cesar A. Roque-Borda ; Fernando R. Pavan; Pedro P. Corbi; Norberto Masciocchi; Alexandre Cuin
Silver-dichloroquinoline complexes have been prepared and their spectroscopic, structural and mycobactericidal properties against Mycobacterium tuberculosis H37Rv (ATCC 27294) have been determined.
Abdullah R. Alanzi ; Bayan A. Alhaidhal; Raghad M. Aloatibi
A chemical feature-based pharmacophore model for cyclooxygenase-1 (COX-1) was developed to virtually screen nine commercial databases, yielding 807 potential hits. Following molecular docking, compounds with binding affinities between ‒11.27 and
‒10.47 kcal mol-1 were identified, and four were selected for further analysis through molecular dynamics (MD) simulations, indicating their potential as lead compounds to modulate COX-1 activity in neuroinflammation.
Jaqueline F. Silva; Luciana A. da Silva; Eloize S. Alves; Carmen T. Guedes; Patrícia M. de Souza; Suelen S. dos Santos ;
Jesui V. Visentainer; Grasiele S. Madrona; Diogo F. Rossoni; Mônica R. S. Scapim
Exploring the native fruits of Brazil, cagaita and mamacadela, to uncover their potential for diverse applications.
Henrique A. Cunha; Italo R. S. Vieira; Sabrina S. Teixeira; Daniela L. Martins; Marcos A. S. Costa
Novel functionalized microspheres with trimercaptotriazine (TMT) groups based on poly(styrene-co-divinylbenzene) (PS-DVB), with and without polystyrene brushes, were synthesized, characterized, and compared for TMT group content. The surface-initiated atom transfer radical polymerization (SI-ATRP) efficiency was compared under different surface initiations.
Marcela S. Zangirolami ; Alisson L. Figueiredo; Patrícia D. S. Santos; Paulo Henrique Março; Oscar O. Santos
An analysis of the relationship between fatty acids, chlorophyll, and RGB (red, blue, green) channels to identify the adulteration of extra virgin olive oil with soybean oil.
Gisela Ibáñez Redín; Daniel C. Braz; Débora Gonçalves; Osvaldo N. Oliveira Jr.
Full voltammogram analysis through machine learning for enhanced detection in electrochemical immunosensors.
Rubens C. Souza ; Julio C. Duarte
; Ronaldo R. Goldschmidt
; Itamar Borges Jr.
Molecules from the QM-symex database are converted to SMILES (simplified molecular input line entry system) and stored in a new QM-symex-modif dataset with their target properties. The data is processed and used in machine learning models to develop predictive models for photophysical properties.
Ingrid G. B. L. Cruz; Flávia R. P. Sales; Wallace D. Fragoso ; Lúcio R. C. Castellano; Fabyan E. L. Beltrão; Talita N. Cardoso;
Maísa S. de Oliveira; Sherlan G. Lemos
The blood composition imbalance following coronavirus disease (COVID-19) causes a systematic change in impedance, which can be modelled by multivariate analysis.
Bárbara F. Farias ; Miller S. Ferreira
; Daniel O. Miranda
; Tayná R. Nunes; Natália F. Pereira; Patrícia F. Espuri
;
Jaqueline P. Januario ; Fábio A. Colombo
; Marcos J. Marques
; João L. B. Zanin
; Marisi G. Soares
; Thiago B. de Souza
; Diogo T. Carvalho
; Daniela A. Chagas-Paula
; Danielle F. Dias
Application of machine learning and computational tools to predict antileishmanial activity, emphasizing the synergy of computational and experimental methods in developing novel therapeutic agents.
Karime Zeraik A. Domingues; Alexandre de F. Cobre; Mariana M. Fachi; Raul Edison L. Lazo; Luana M. Ferreira;
Roberto Pontarolo
This study utilizes Quantitative Structure-Activity Relationship (QSAR)-based machine learning models, validated with bioactivity data median inhibitory concentration (IC50) of compounds against Trypanosoma brucei and Trypanosoma cruzi, for screening Food and Drug Administration (FDA)-approved compounds as candidates for repurposing in the treatment of both trypanosomiases.
Edilson B. Alencar Filho ; Rosalvo F. Oliveira Neto; Vanessa C. Santos; Allysson L. S. Ferreira
De novo design of a new lead compound with potential inhibitory effect on monkeypox virus F13 protein (VP37) by deep reinforcement learning and structure-based drug design.
Anderson J. A. B. dos Santos; Paulo A. Netz
Machine learning combined with virtual screening has enabled the discovery of a significant variety of molecules exhibiting high affinity with shikimate kinase. Subsequent evaluation through molecular dynamics and free energy calculations has facilitated the identification of potential inhibitor candidates.
Matheus L. Silva; João L. Baldim; Thais A. Costa-Silva; Maiara Amaral; Maiara M. Romanelli; Erica V. C. Levatti; Andre G. Tempone; João Henrique G. Lago
Machine learning and multivariate statistical analyses identified molecular features correlated with biological activity of phenylpropanoid against Trypanosoma cruzi.
Online version ISSN 1678-4790 Printed version ISSN 0103-5053
Journal of the Brazilian Chemical Society
JBCS Editorial and Publishing Office
University of Campinas - UNICAMP
13083-970 Campinas-SP, Brazil
Free access