Recent Papers - Machine Learning Special Issue
Reviews/Accounts - last 5 years
Bianca R. Brito ; Lucas G. Fachini
; Kahoana Postal
; Rúbia Camila R. Bottini
; Eduardo L. de Sá
; Sônia F. Zawadzki
; Giovana G. Nunes
A mixed valence polyoxovanadate and poly(vinyl chloride) forms green homogeneous films, studied by molecular docking.
Gabriel M. Tonin ; Tatiana Pauletti
; Ramiro M. dos Santos
; Vivian V. França
Ant Colony Optimization method (inspired by the collective behavior of ants in optimizing paths) to optimize one (1D) to five (5D) parameters of an analytical density functional for the ground-state energy of strongly correlated systems. The performance is assessed by the mean relative error (MRE): for 3D and 5D we find MRE ca. 0.8%, an error reduction of 67% compared to the original parametrization (MRE = 2.4%).
Nelson Durán ; Wagner J. Fávaro
; Symone C. de Castro
; Gerson Nakazato
; Guillermo R. Castro
; Giselle Z. Justo
;
Ljubica Tasic
Violacein is a natural purple pigment that shows a wide range of bioactivity. The current review addresses different aspects of violacein, such as its production, purification, and biological activities, aiming to enhance its viability for technological applications.
Arthur R. de Souza; Julia C. F. Ximenes; Caio V. N. Borges; Samir F. A. Cavalcante; Marcio Fronza; Thiago Barth; Shaft C. Pinto ; Fernando M. Santos Jr.
In this paper, the absolute configuration of (+)-hirsutanonol was unambiguously determined by means of optical rotation (OR) and electronic circular dichroism (ECD) chiroptical properties supported by quantum chemical calculations.
Paulo Victor P. dos Santos; Nícolas Glanzmann; Adilson D. da Silva; Fernando R. Pavan; Christian S. C. Canales; Cesar A. Roque‑Borda; Pedro P. Corbi; Douglas H. Pereira; Kaíque A. D'Oliveira; Alexandre Cuin
Biological results of N-acylhydrazones from isoniazid and aldehydes showed silver(I) complexes with N-acylhydrazones as promising antitubercular drugs with high selectivity index.
Emilly C. Silva; Aluísio C. Pinto; Charlie G. Gomes; Raimundo R. Passos; Consuelo A. da Frota; Leandro A. Pocrifka
This figure represents the physical grinding modifications performed on graphite, using parameters obtained through multivariate analysis, resulting in capacitive graphene and electrochemical tests.
Neiva Maria N. Oliveira; Benedito B. Farias Filho ; Christian Dário S. de Melo; Wilkins O. de Barros
This study investigates the technological reconstruction and chemical composition of fine earthenware from the 18th and 19th centuries in Piauí.
João M. L. Soares ; Theodora W. von Zuben
; Airton G. Salles Jr.
; Sylvio Barbon Junior
; Juliano A. Bonacin
Prediction of glycerol electrooxidation potentials using machine learning, with improved feature treatment.
Aline M. Arouca ; Victor Emmanuel D. Aleixo
; Maurício L. Vieira
; Márcio Talhavini
; Ingrid T. Weber
Quantification of polycyclic aromatic hydrocarbons (PAHs) deposited on the personal protective equipment (PPE) of firefighters, during firefighting training.
Maria Fernanda A. V. Matos; Gabriela F. P. de Souza; Anna Paula R. de Queiroga; Airton G. Salles Jr.; Susanne Rath
N-Nitrosamines in cosmetic thermal waters: market analysis and analytical method.
Franciele O. C. da Rocha ; Vânia P. Campos
; Gisele O. da Rocha
Inorganic nitrogen compounds and BTEX (benzene, toluene, ethylbenzene and xylenes): chemistry of the urban atmosphere and its relationship with air quality and human health.
Mutairah S. Alshammari ; Wassila Derafa
;Hassanien Gomaa
This review focuses on the development of advanced fluorescent and colorimetric sensors for the detection and removal of cadmium (CdII) and chromium (CrIII,VI) ions from water.
Amanda de A. Borges; Yuri P. V. de Carvalho; Cristal V. T. Martins; Analice G. R. da Cruz; Edson Evangelista ;
Fernando de C. da Silva ; Luana da S. M. Forezi
This figure highlights recent advances in the synthesis of bioactive coumarin-1,2,3-triazole hybrids, which show potential in treating infectious diseases, cancer, and Alzheimer's, emphasizing their role in medicinal chemistry.
Rita C. O. Sebastião ; Natália R. S. Araujo
; Felipe S. Carvalho
; Bárbara D. L. Ferreira
; João Pedro Braga
Kinetic of thermal processes can be accurately determined by combining artificial neural network with thermal analysis techniques.
Fernando P. Rachelle; Arthur B. Bernardo; Rebecca S. Barbarini; Alana D. Cicilinski ; Patricio Peralta-Zamora
This figure illustrates the phenol degradation process in a Raceway Pond Reactor using the photo-Fenton reaction. Fe²⁺/H₂O₂ generates hydroxyl radicals (HO), which degrade phenol into smaller organic acids and CO₂. Sunlight enhances Fe²⁺ regeneration, sustaining radical production. The system ensures continuous degradation through radical propagation and oxidation pathways.
Julio Cesar Duarte ; Antonio G. S. de Oliveira-Filho
; Matheus Máximo-Canadas
; Rubens C. Souza
; Itamar Borges Jr.
Machine learning uses algorithms and statistical models for defined tasks and learning patterns from data without explicit instructions. Its basic concepts and some applications are reviewed.
A synthesis routine of a mesoporous porphyrin polymer used a block copolymer template-directed method.
Melina B. T. Zanatta ; Ingrid Johanna P. Hernandez; Hendryk Gemeiner; Amauri Antonio Menegário
; Hung Kiang Chang;
Sueli Caleffi; Talita A. A. Pereira
Tree core and paired soil samples were collected, digested in a microwave system and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for their respective total concentrations of Cu, Fe, Mn, Ni, Pb, and Zn. Additionally, soil samples were treated by the Mehlich-1 solution to assess the labile content of the analytes using inductively coupled plasma optical emission spectrometry (ICP-OES).
Leonardo A. Veltrone; Eliseu Santana Junior; Yunier Garcia-Basabe ; José Ricardo C. Salgado
Steps of graphene oxide (GO)/reduced graphene oxide (rGO) synthesis by electrochemical exfoliation of graphite from discharged batteries due to the use of acidic electrolytes.
Francisco J. Araujo ; Denise C. Hissa; Celso S. Nagano; Luciana R. B. Gonçalves; Vânia M. M. Melo
Bacillus subtilis TIM27, isolated from mangrove sediments, produced the BiosT27 biosurfactant and the ProT27 subtilisin, exhibiting protease and esterase activities. When tested together as detergent additives, they demonstrated excellent stain removal performance.
Xiaobing Zhao; Weichen Wang; Jun Liu ; Meng Lian; Youjun Yan
; Guofu Huang; Yongwei Li; Xinzhen Feng
A highly efficient hypocrystalline V-P-C catalyst with a porous honeycomb structure is utilized for the continuous production of acrylic acid through glycerol dehydration.
Rômulo P. de Almeida; Sara R. S. Peçanha; Luanda A. do Nascimento; Daniela F. Hermínio; Lêda Cristina da Silva ;
Ana Cláudia V. de Araújo; Ivoneide C. L. Barros; Beate S. Santos
ZnO and Ni-Al-Oxide associated with Ag prismatic nanoplatelets as efficient materials for the photocatalytic degradation of Remazol Black 5 and Methylene Blue.
Andressa Rafaella S. Bruni ; Eloize S. Alves; Talita Aparecida F. Campos; Lívia C. Carvalho; Oscar O. Santos Júnior
A review of the functionalities of natural antioxidants with sustainable food packaging.
Gabriel B. L. Vitorino; Jackson R. S. Silva; Carlos A. de Souza; Amanda C. O. D. Barros; Ivo D. L. Silva; Glória M. Vinhas;
Adriano N. Simões; Giselle B. Bezerra; José F. Q. Pereira ; Andréa M. S. S. Brito
Representative process of atmospheric degradation study in a semiarid climate of pure poly (butylene adipate-co-terephthalate) films and those with orange oil additives using conventional and machine learning methods.
Marcelo C. Costa; Adeildo Junior de Oliveira; João Paulo T. S. Santos; Vinicius Del Colle
Phenol degradation was studied by advanced oxidative processes using different approaches and the maxima efficiency obtained was 99% after 120 min.
João L. Baldim ; Welton Rosa; Thais A. C. Silva; Daiane D. Ferreira; Andre Gustavo Tempone; Daniela Aparecida C. de Paula
; Marisi G. Soares; João Henrique G. Lago
From chemical compounds to predicting the antitrypanosomal activity of new candidates against Trypanosoma cruzi trypomastigotes.
Rafaela M. de Angelo; Vinícius G. Maltarollo; João Henrique G. Lago; Kathia Maria Honorio
Machine learning models were used to predict the biological activity of natural products against Schistosoma mansoni. Virtual screening identified 14 promising compounds, which were further analyzed for absorption, distribution, metabolism, excretion and toxicity (ADMET) properties.
Bárbara S. Rodrigues ; Natalia G. Rosa; André S. Polo
This paper advances sustainability by introducing an eco-friendly solvent for perovskite solar cell fabrication, reducing its environmental impact.
This work paper the applications of Natural Language Processing (NLP) and Large Language Models (LLMs) in chemistry and materials science, highlighting their role in chemical entity recognition, reaction prediction, materials discovery, and literature analysis.
Ariane R. S. Rossin; Arthur R. S. Kammler; Marlize F. Barbosa; Mônica L. Aguiar; Gabriela B. Medeiros; Eduardo Radovanovic;
Wilker Caetano; Douglas C. Dragunski
Development of a photodynamic inactivation-enhanced air filtration system using nonwoven polypropylene coated with electrospun nanofibers.
Igor H. Sanches; Francisco L. Feitosa; Jade M. Lemos; Sabrina Silva-Mendonça; Ester Souza; Victoria F. Cabral; José T. Moreira-Filho; Henric Gil; Bruno J. Neves; Rodolpho C. Braga; Joyce V. V. B. Borba; Carolina H. Andrade
The figure illustrates the core components of quantitative structure-activity relationship (QSAR)-Lit, a platform designed to streamline the QSAR modeling process. It encompasses data curation, descriptor calculation, machine learning, and virtual screening, enabling seamless and efficient analysis for drug discovery applications.
Maicon Pierre Lourenço ; Mosayeb Naseri; Lizandra Barrios Herrera; Hadi Zadeh-Haghighi
; Daya Gaur; Christoph Simon;
Dennis R. Salahub
A quantum active learning method (QAL) for automatic structural determination of doped materials has been developed and implemented in the QMLMaterial software. QAL uses quantum circuits for data encoding to create quantum machine learning models on-the-fly.
Ana Paula S. Figueiredo; Junio R. Botelho; Marcia Helena C. Nascimento ; Maria Cristina Canela
; Royston Goodacre;
Paulo R. Filgueiras; Murilo O. Souza
This study employs supervised learning methods, including Partial Least Squares Discriminant Analysis (PLS-DA) with bootstrap resampling and Support Vector Machine (SVM) ensemble, to analyze biogenic volatile organic compounds (BVOCs) emissions in the Atlantic Forest, achieving high classification accuracy.
Gisela Ibáñez Redín; Daniel C. Braz; Débora Gonçalves; Osvaldo N. Oliveira Jr.
Full voltammogram analysis through machine learning for enhanced detection in electrochemical immunosensors.
Rubens C. Souza ; Julio C. Duarte
; Ronaldo R. Goldschmidt
; Itamar Borges Jr.
Molecules from the QM-symex database are converted to SMILES (simplified molecular input line entry system) and stored in a new QM-symex-modif dataset with their target properties. The data is processed and used in machine learning models to develop predictive models for photophysical properties.
Ingrid G. B. L. Cruz; Flávia R. P. Sales; Wallace D. Fragoso ; Lúcio R. C. Castellano; Fabyan E. L. Beltrão; Talita N. Cardoso;
Maísa S. de Oliveira; Sherlan G. Lemos
The blood composition imbalance following coronavirus disease (COVID-19) causes a systematic change in impedance, which can be modelled by multivariate analysis.
Bárbara F. Farias ; Miller S. Ferreira
; Daniel O. Miranda
; Tayná R. Nunes; Natália F. Pereira; Patrícia F. Espuri
;
Jaqueline P. Januario ; Fábio A. Colombo
; Marcos J. Marques
; João L. B. Zanin
; Marisi G. Soares
; Thiago B. de Souza
; Diogo T. Carvalho
; Daniela A. Chagas-Paula
; Danielle F. Dias
Application of machine learning and computational tools to predict antileishmanial activity, emphasizing the synergy of computational and experimental methods in developing novel therapeutic agents.
Karime Zeraik A. Domingues; Alexandre de F. Cobre; Mariana M. Fachi; Raul Edison L. Lazo; Luana M. Ferreira;
Roberto Pontarolo
This study utilizes Quantitative Structure-Activity Relationship (QSAR)-based machine learning models, validated with bioactivity data median inhibitory concentration (IC50) of compounds against Trypanosoma brucei and Trypanosoma cruzi, for screening Food and Drug Administration (FDA)-approved compounds as candidates for repurposing in the treatment of both trypanosomiases.
Edilson B. Alencar Filho ; Rosalvo F. Oliveira Neto; Vanessa C. Santos; Allysson L. S. Ferreira
De novo design of a new lead compound with potential inhibitory effect on monkeypox virus F13 protein (VP37) by deep reinforcement learning and structure-based drug design.
Anderson J. A. B. dos Santos; Paulo A. Netz
Machine learning combined with virtual screening has enabled the discovery of a significant variety of molecules exhibiting high affinity with shikimate kinase. Subsequent evaluation through molecular dynamics and free energy calculations has facilitated the identification of potential inhibitor candidates.
Matheus L. Silva; João L. Baldim; Thais A. Costa-Silva; Maiara Amaral; Maiara M. Romanelli; Erica V. C. Levatti; Andre G. Tempone; João Henrique G. Lago
Machine learning and multivariate statistical analyses identified molecular features correlated with biological activity of phenylpropanoid against Trypanosoma cruzi.
Online version ISSN 1678-4790 Printed version ISSN 0103-5053
Journal of the Brazilian Chemical Society
JBCS Editorial and Publishing Office
University of Campinas - UNICAMP
13083-970 Campinas-SP, Brazil
Free access